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Abstract—The Time-Dependent Ginzburg-Landau
(TDGL) equation is known as a nonlinear equation that
enables us to reproduce variously-scaled physical phenom-
ena represented by the Ginzburg-Landau equation. In this
paper, we numerically discuss the dynamics of fluxoids
in type-II superconductors based on the TDGL equation.
In particular, we discuss the dynamics of trapping of a
fluxoid at a pinning point and the release by an external
perturbation by electromagnetic wave. The manipulation
of fluxoid by the perturbation gives us an approach to
quantum systems by classical dynamics.

1. Introduction

Type-II superconductors show the mixing state of flux
penetrated into bulk/film. The flux is spatially quantized
in the superconductor [1]．The quantized flux is called
fluxoid. Fluxoids are pinned at low potential wells caused
by impurities in the superconductor. The normal conduc-
tion particles, clacks, and so on become the impurities of
crystal. The pin is surrounded by superconducting current,
which traps a fluxoid in it. The gradient of potential around
the pin becomes negative. That is, the fluxoid is attracted.
In addition, the force strongly depends on the magnetic
characteristics of superconductor, so that the hysteric char-
acteristics appear in the pinning force and magnetic field
relationship. The hysteric characteristics produce the pos-
sibility of high potential magnets which can be applied in
magnetic levitation systems [2]. The application of bulk
superconductor is clear but the physics of the fluxoid is not
the level of analysis in nonlinear dynamics.

The distribution of magnetic flux for type II supercon-
ductor can be described by Time-Dependent Ginzburg-
Landau (TDGL) equation [3]．There have been amount of
simulations based on the equation for estimating fluids and
physics of flux pinning [4, 5]. This paper focuses on the
dynamics of fluxoid in type II superconductor by numeri-
cal simulations of TDGL equation. In particular, the ma-
nipulation of fluxoid is considered through a perturbation
by electromagnetic wave.

2. TDGL Equation and Model of Type II Superconduc-
tor

For the analysis of fluxoid in a thin film consisting of
type II superconductor, a mathematical model based on

TDGL equation is introduced. Figure 1 approximates a
2D model of superconducting thin film. The thin film is a
square with Lx = Ly and negligible thickness of z direction．
TDGL equation is represented by Eqs. (1) and (2)[3]．
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where, A denotes vector potential, φ scalar potential, ψ
complex order parameter, and J current density. es and ms
are defined as superconducting electron and the mass. α
and β are the constants depending on temperature, µ0 is the
permeability of vacuum. σ and D correspond to the con-
stants of conductivity and diffusion coefficient at normal
conduction. c is the light speed. The boundary condition is
given for the normal vector:

1
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rotA × n = H × n, J · n = 0 (3)

Normalization and standardization of the above equation
lead the next TDGL equation with no dimension [5]．The
standard values are set at
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Variables in Eqs. (1), (2) are

x′ = x/ξ, y′ = y/ξ, z′ = z/ξ, t′ = t/τ,

ψ′ = ψ/ψ0, H′ = H/(
√

2Hcκ),

A′ = A/(
√

2µ0Hcκξ), φ′ = φ/(
√

2µ0HcκD). (5)

The non-dimensional TDGL equation is given by
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Figure 1: A 2-dimensional model of type-II superconduct-
ing thin film.

Table 1: Parameter settings
κ 1.4355
η 4.0440 × 10−2

ξ 28.5 nm
λ 41.0 nm

Lx, Ly 410 nm
Nx, Ny 20

The boundary conditions are also given by

∇ψ · n = 0, rotA × n = H × n, A · n = 0 (8)

The following discussions are based on the estimation by
Eqs.(6)–(8).

3. Simulations

3.1. Setting of quasi-static simulation

In the simulations, a model of thin film of type II super-
conductor is considered. The thin film is analyzed at the
mesh by Nx×Ny on x, y plane. hx and hy is the unit of mesh
in each direction. The TDGL equation for each node gives
a set of ordinary differential equations depending on time
t and space. The equations can be analyzed by 4th-order
Runge-Kutta method. The numerical simulation of flux in
the thin film is obtained by the time development of ψ and
A. Flux density B is descried by rotA. The parameters in
the simulation are shown in Tab.1.

We use an assumption: the complex order parameter ψ
at pinning point keeps constant without depending on time.
Superconducting electron density |ψ|2 is set at zero.

Figure 2 displays the result of simulation for the external
magnetic flux toward z-direction. After the penetration of
flux, fluxoids appear by the analysis of TDGL equation,

Hz=

Hd − Hd cos
(

2πt
80

)
(0≤ t<80)

0 (t≥80)
, Hx=Hy=0, (9)

where Hd = 0.26.

 0
 5

 10
 15

 20 0
 5

 10
 15

 20

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

B

x y

(a) penetration of flux at t = 55

 0
 5

 10
 15

 20 0
 5

 10
 15

 20

 0
 0.1
 0.2
 0.3
 0.4

B

x y

(b) quantization of flux at t = 75

 0
 5

 10
 15

 20 0
 5

 10
 15

 20

 0
 0.1
 0.2
 0.3
 0.4

B

x y

(c) pinned fluxoid at t = 100

Figure 2: Incursion of magnetic flux and pinning of fluxoid.

3.2. Behavior of fluxoid between two pinning points

Here, we examine the dynamical behavior of free flux-
oid between two pinning points. Fig. 3 shows the initial
condition for simulation. A fluxoid is set at center and pin-
ning centers are set at w = 4,−4 along the w axis. We can
guess that the fluxoid will move to one of pinning centers.
At the initial position, the potential is equivalent to both
directions to pins. Therefore, we can expect the dynamics
around saddles of potential wells for fluxoid. Fluxoid is not
a particle but behaves as a packet of energy.

At the initial condition, the fluxoid has no velocity of
displacement: ẇ = 0. Depending on the initial position on
the w-axis, the fluxoid is attracted to one of the two pinning
centers. At the same time, when the fluxoid has a velocity
of displacement initially, it goes over the potential saddle.
We can see the dynamics in simulations. The details are
presented in the final paper.

In this analysis, we can see the phase space of dynamics
for superconducting fluxoid with considering the distribu-
tion of impurities in the thin film. The domain of attraction
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Figure 3: Positional relation between a fluxoid and pinning
points in a 2-dimensional model.
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Figure 4: A picture about the behavior of fluxoid near the
saddle point formed by 2 pinning points.

for the fluxoid is the dynamical structure of the supercon-
ductor, which is related to the pinning and flux flow states
under the perturbation of external magnetic field.

3.3. Manipulation of fluxoid by electromagnetic wave

Fluxoid is a distributed magnetic flux, which does not
concentrate on a point and is quantized by super conduc-
tion electron. Therefore, the position and velocity cannot
be clearly defined. Here the velocity of displacement im-
plies a spatial transfer of magnetic field packet. We need
to mention that the fluxoid with velocity shows that there
appears the disturbance of the vector potential A depending
on the velocity.

3.4. Setting of external perturbation by electromag-
netic wave

The electromagnetic wave is irradiated to the surface of
superconducting thin film. The direction is limited to +z
locally. The polarization of the wave is TEM wave. H =
[Hx,Hy, 0]T is kept. Hx and Hy are given by

Hx=Hdx cos (2π f t + χx) , Hy=Hdy cos
(
2π f t + χy

)
, (10)

where Hdx and Hdy denote the amplitudes of the magnetic
field, f the frequency of electromagnetic wave, and both χx

and χy the phase shifts. Then, the boundary conditions (8)
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Figure 5: Behavior of fluxoid irradiated by TEM wave.

must satisfy the following conditions:

∂Ax

∂z
= Hy,

∂Ay

∂z
= −Hx. (11)

In the 2D model, the difference in z is assumed as the
approximation in a slab with hz(= hx).

3.5. Manipulation of fluxoid

Here, let us consider how the fluxoid is trapped in a pin-
ning center by the external electromagnetic wave. In the
Fig. 3, the fluxoid at (x, y) = (9, 9), which has no initial
velocity, moved to a pinning center at (6, 6). The saddle
at (10, 10) separates the direction of the behavior of flux-
oid. Then, the fluxoid cannot reach the pinning center at
(10, 10).

We set the parameters of electromagnetic wave for per-
turbation as Hdx = Hdy = 1, f = 5.0 × 105, χx = 0,
χy = π. The TEM wave is irradiated to the points at
(11, 11), (11, 12), (12, 11), and (12, 12) during 0 ≤ t < 10.
Fig. 5 shows the behavior of fluxoid affected by exter-
nal perturbation. Because of the perturbation, the density
distribution of fluxoid was collapsed. Finally, the fluxoid
could reach the pinning center (14, 14) over the saddle,
which could not be overcome.

Figure 6 shows the superconducting electron distribution
|ψ|2 at t = 1. In Fig. 6, there exists the superconducting
state, which keeps |ψ|2 = 1, and normal conducting state at
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Figure 6: Density distribution of superconducting electrons
(t = 0) under the case of existing external perturbation.

|ψ|2 = 0. The area irradiated by TEM wave loses the su-
perconductivity, like |ψ|2 ∼ 0. It implies that the potential
structure by two pinning centers loses the two well distri-
bution. This induces the movement of fluxoid from (10, 10)
to (14, 14).

3.6. Release of trapped fluxoid

Here let us consider the release of trapped fluxoid from
the pinning center by using electromagnetic wave.

Initially, the fluxoid is set at (11, 11) without initial ve-
locity of displacement. That is, the fluxoid is trapped at the
pinning center. It is easily imagined that the fluxoid needs
much perturbation in order to be kicked out from the well.

Set the perturbation as Hdx = Hdy = 5, f = 5.0 × 102.
The perturbation was irradiated, starting from χx = χy = 0
at (10, 10), (11, 11), and (12, 12), ended at (6, 6), (7, 7), and
(8, 8). Fig. 7 shows the release behavior of fluxoid from the
pinning center. This is caused by the temporal exchange of
superconducting region to normal conducting region. The
sufficient perturbation can overcome the trap of fluxoid.

4. Concluding Remarks

TDGL equation can represent the behavior of fluxoid
around pinning centers. The external electromagnetic wave
can manipulate the fluxoid by exchanging the superconduc-
tor into normal conductor as pinning center. Instead of ma-
nipulation, the electromagnetic wave can also release the
trapped fluxoid from a pinning center. By the discussion
in this paper, we can obtain a clue to to catch and release
of quantized magnetic flux in superconductor in thin film.
The phenomena is a kind of ratchet mechanisms of mag-
netic fluxoid
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Figure 7: Release of fluxoid irradiated by TEM wave.
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