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Abstract– This paper demonstrates numerically
excitation of intrinsic localized modes (ILMs) and their
interactions in transverse oscillations of an articulated
structure with free ends. The structure consists of many,
identical rigid members, which are connected to adjoining
ones by elastic couplers yielding nonlinear restoring
moments in angular displacements, and are supported by
linear springs at center of mass of each member. The
structure extends straight in equilibrium and the
displacements are restricted in a plane. Eigen-frequencies
of the linearized system are confined in a band with a
lower limit determined by the elastic supports. Here
concerned is a case that the coupler is of soft-spring type
in angular displacements between adjacent members,
where the restoring moment has the maximum or
minimum. For a certain range of parameters involved in
the system and initial conditions, a movable ILM can be
excited at a frequency lower than the smallest eigen-
frequency. If two ILMs of equal amplitude are excited
simultaneously, it is revealed that (1) they are coalesced
into a single ILM, (2) they are collapsed into ripples or (3)
they are separated to be trapped at both ends.

1. Introduction

Intrinsic localized modes or discrete breathers (DBs)
are discovered by the pioneering studies in the 1980s, for
example, Sievers and Takeno [1]. They are temporally
periodic and spatially localized oscillations that occur
stably in spatially discrete and perfectly periodic nonlinear
systems without any defects, impurities or dissipative
forces. Many investigations are now still being made
theoretically and experimentally. (For example, see Flach
and Gorbach [2].)

While those models are concerned with longitudinal
oscillations in lattice dynamics, a periodic and articulated
structure has been proposed to model transverse oscillations
in large-scaled structures [3]. Although the structure consists
of many identical units, it is emphasized that the number of
units is large but finite. Thus the structure may be regarded as
a periodic one locally but it is not so in a global and exact
sense.

The simplest structure consists of combination of a
number of identical units, such as beams or panels
connected to adjoining ones by couplers, and, therefore,
possess locally spatial periodicity. Supposing that each

coupler gives nonlinear restoring torque M in the form of

 3CM K K     to the angle  between two

adjacent members, where K and KC are constants, we have
revealed the existence of ILMs numerically and examined
their characteristics and behaviors of propagation [3, 4].

In this paper we consider the articulated structure
supported by linear springs at each center of the member
(see Fig. 1). While the linear dispersion relation in the
case of no supports permits wave propagation at a
frequency lower than the cutoff frequency 0, the
existence of the supports pushes up the bottom of the
dispersion curve and yields a stopping band in low
frequency. There we have found that the low-frequency
ILMs can be excited indeed but the domain of existence of
the ILMs in the plane of parameters characterizing the
structure is considerably restricted in comparison with the
case of usual high-frequency ILMs [5]. Our calculations
show that, in the case that / 0CK K   (hard-spring

type), the low-frequency ILMs are likely to stay around
the center or at the end of structure where they were
excited, whereas, in the case that  < 0 (soft-spring type),
the ILMs are likely to be movable.

In this paper we consider the interactions between two
movable ILMs excited in the case that  < 0.

2. Model and Formulation

The structure consists of N ( 2N  ) identical and rigid
members, which are of finite length and of uniform
density along the axis, connected to adjoining ones at both
ends by identical couplers giving nonlinear restoring
moment and supported at each center of mass by linear
springs (Fig. 1). Each member may be a beam or a panel,

beam or panel
coupler

elastic support

x

y

Fig. 1 Model of a spatially periodic and articulated
structure supported elastically by linear springs at each
center of unit.
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and the mass of the coupler and the length of the interval
of the junction are assumed to be negligible. A member
with couplers at both ends forms one unit of the structure.
Supposing that the number of the units N is large but finite,
they are numbered consecutively by integer j (1 j N  )

and physical variables pertaining to the unit j are denoted
by attaching subscript j. At the left end of the 1st unit and
the right end of the N th unit, the structure is assumed to
be free.

Motions of the structure are restricted in the x-y plane
where the x-axis is taken along the structure in
equilibrium. It is assumed that restoring force by linear
spring acts the unit at its center only in the y direction. In
the j th unit, the position of the center of mass of the unit
is denoted by (xj(t), yj(t)) and the angle of the centerline to
the x-axis is denoted by j(t), t being the time. Suppose
that the restoring moment (torque) Mj, which is affected
by the coupler at the left end of the j th unit, is given by a
linear plus cubic function of difference in angle between
two centerlines of the adjacent units in the following
form:

3
j j j-1 C j j-1( ) ( ) ,M K K      

for 2 j N  , K (> 0) and KC being constant. We

consider the case that KC < 0 in this paper.
Equations of motions are easily derived by applying the

Newton's law of motions to each unit: the equations for
translation and rotation about the center of mass. The
conditions for continuity of displacement at each junction
are required for geometrical constraints. The variables in
these equations and conditions are normalized by
adequate quantities with two parameters:  for the
nonlinearity in the response of coupler to rotation and 
for the stiffness of linear spring to deflection. The total
energy of the system is conserved of course.

The linear dispersion relation to the equations is
derived by assuming a sinusoidal wave for yj (or j) in the

form of  exp i k j t 
  , k and  being a dimensionless

wave number and an angular frequency, respectively, as
follows:

   
 

1/2
4 2

0 2

sin / 2 ( /16)cos / 2
,

3 2sin / 2

k k

k


 

 
 
  






where 0 48  . The function on the right-hand side is

periodic in k with periodicity 2, but the shortest
wavelength occurs physically at k =  (-mode or
zigzagged configuration). The width of the passing band
is dependent on the value of  and is the smallest at  =
48. It is seen that -mode takes  = 0 irrespective of the
value of  and the passing band lies under 0 for 48  .

In the following calculations, we take  = 48 for the
narrowest passing band.

3. Numerical Results

3.1. Mobile ILMs

The simultaneous equations derived above are solved
numerically with the free boundary condition at both ends
of the structure and appropriate initial conditions for the
combinations of values of  and . We have taken N = 64,
 < 0 and the initial conditions which are given by the
values for j in the form of the  mode whose envelope is
modulated in the form of a sech-type pulse as

 j ( )1 sech
j

j cA       

for 1 j N  , where A,  and  are constants, c (= N/2 +

1/2) is the center of structure and  ( 0 | | / 2N  )

indicates the offset of the center position of modulation
from c. The initial positions, xj(0) and yj(0), are
determined by the conditions of constraints if one set of
the values of j(0) for all j is prescribed. All initial
velocities are taken to vanish. For the adequate
combinations of values of  and  and initial conditions,
single localized oscillations can be excited and they
generally move in the structure (i.e. single mobile ILMs)
except for some special cases when the structure is
disturbed initially just at its center or near one end of it. In
almost cases the ILMs become undulating around the
center depending on the value of ||. A typical solution is
displayed in Fig. 2 for  = 16,  = -340, A = /90 and  =
0.9.

In the following, we will study the interactions between
two localized oscillations of the same amplitude
positioned symmetrically with respect to the center of
structure.

3.2. Interactions between Two Localized Oscillations

To excite two symmetric ILMs of the same amplitude,
we adopt an initial condition in the following form:

x

y

t

Fig. 2 Typical mobile ILM in the structure for

 = 16 ( = -340, A = /90,  = 0.9).
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 j ( ) ( )1 {sech sech },
j

j c j cA                

with zero velocities for all j. For the same values of  and
 as the ones in previous section, the equations are solved
by the standard 4th-order Runge-Kutta method,
monitoring the total energy to be conserved.

Typical solution is displayed in Fig. 3. It is seen that
two identical localized oscillations are excited and they
immediately come close to each other, coalesce at the
center of structure and behave as a single stationary mode
of oscillations. The configuration maintains the symmetry
with respect to the center and the localized modes
oscillate in phase with each other. In most cases of ||
( 0 | | 29  ), the behaviors become qualitatively similar.

For the larger values of |, the two localized oscillations
separate from each other to behave independently.

4. Conclusions

The interactions between two localized oscillations
whose envelopes have the same amplitude and are
symmetrical with respect to the center of the structure
have been numerically studied. The domain of existence
of the low-frequency ILMs in the - parameter plane for
 < 0 is narrow in comparison with that of high-frequency
ILMs, therefore, the variety of the interactions is poor [5,
6]. It is revealed that the localized oscillations, when
excited in close vicinity of each other, are attractive and,
therefore, become to coalesce into single one or collapse
into ripples at the center of structure.
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Fig. 3 Typical interactions between two identical

localized oscillations ( = 16, A=/180).
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