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Abstract—Intrinsic localized modes (ILMs) have
been generated and characterized in two-dimensional
nonlinear electrical lattices which were driven by a
spatially-uniform voltage signal. These ILMs were
found to be either stationary or mobile, depending on
the details of the lattice unit-cell, as had already been
reported in one-dimensional lattices; however, the mo-
tion of these ILMs is qualitatively different in that it
lacks a consistent direction. Furthermore, the hop-
ping speed seems to be somewhat reduced in two di-
mensions due to an enhanced Peierls-Nabarro (PN)-
barrier. We investigate both square and honeycomb
lattices composed of 6 × 6 elements. These direct ob-
servations were further supported by numerical simu-
lations based on realistic models of circuit components.
The numerical study moreover allowed for an analysis
of ILM dynamics and pattern formation for larger lat-
tice sizes.

1. Introduction

Solitons emerge as classes of solutions to many
nonlinear differential equations described chiefly by
one spatial dimension; prominent examples are the
KdV equation, the sine-Gordon or the nonlinear
Schrödinger equations. In two dimensions, quasi one-
dimensional localization patterns can often still occur
[1], but robust two-dimensional (2D) localization in
continuous media is rather atypical (see Ref. [2] and
references therein). However, it is well-known that dis-
creteness of the underlying medium can help to stabi-
lize such localized solutions even in higher dimensions
[3, 4].

ILMs have been considered experimentally in a
variety of other settings including (but not limited
to) micromechanical cantilever arrays [5], Josephson-
junction ladders (JJLs) [6], layered antiferromagnetic
crystals [7], halide-bridged transition metal complexes
[8], and dynamical models of the DNA double strand
[9]. Yet, in most of these examples, the coherent struc-
tures are effectively one-dimensional.

Even in higher dimensional lattice settings (e.g. in
optical waveguide arrays or photorefractive crystals

[10]), however, it is often difficult to find stable lo-
calized eigenmodes experimentally, and the states are
typically stationary. The few experimental results so
far have been in nonlinear optics and atomic physics
[11] settings where stable localized solitary wave struc-
tures have been reported.

Here we show experimentally the existance and sta-
bility of intrinsic localized modes (ILMs), or discrete
breathers (DBs) in two-dimensional, damped-driven
electrical lattices (see also Ref. [12]). We characterize
these breather states in parameter space, and we com-
pare to numerical simulations and stability analysis.
Whereas in the experiment, the lattice size was fixed at
6× 6, in the numerical simulations larger lattices were
also explored. Finally, we focus particularly on ver-
sions of these lattices that support moving breathers.
As we will see, the ILM motion in 2D differs from that
in 1D.

2. The system

The electical 2D lattices investigated in this study
can be visualized as follows: imagine two planes; the
top plane is regularly divided into squares or honey-
combs (both types of lattices were studied), and the
bottom plane represents electrical ground. Within the
top plane, each edge represents a coupling inductor
(L1 = 680 µH), and each vertex represents a lattice
node to which a driven, nonlinear RLC-resonator is
attached. The other end of these RLC-resonators con-
nect to the bottom plane, i.e. the ground. In Fig. 1,
the left two panels illustrate the top plane (when ex-
tended), and the right panel illustrates the nonlinear
RLC-resonator. It is comprised of a varactor diode
(NTE 618) characterized by a nonlinear capacitance
C(V ) and an inductor L2 = 330 µH. Point A is driven
by a single sinusoidal voltage source V (t) via a resistor
R = 10 kΩ, with amplitude Vd and frequency f . It is
important to understand that every node is driven by
the same voltage signal. We study two different unit
cell versions, with the only difference being the pres-
ence of a block capacitor (1 µF) between the diode and
the coupling inductor in one of them, as explained in
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Figure 1: Left: Schematic circuit diagrams of the ba-
sic geometry of the two electrical transmission lines
(honeycomb and square), where black points represent
single elements (right), with or without the block ca-
pacitor Cf . Every single element is connected to the
same sinusoidal voltage source V (t) via a resistor R,
and grounded.

Ref. [13]. The effect of the block capacitor is to make
ILMs mobile.

In the experiment, the lattice size was fixed at 6
by 6, resulting in 36 elements, with periodic boundary
conditions. Node voltages were digitized at points B
at a rate of 2.5 MHz using a multichannel analog-to-
digital converter. Periodic boundary conditions were
instituted by connecting each boundary element with
its corresponding one on the other side of the lattice
via inductors L1.

Using basic circuit theory, and the realistic model-
ing of circuit components, the dynamics of the lattice
(including the block capacitors) can be formulated in
terms of a set of coupled differential equations. Refer-
ences [14] and [12] give more details.

3. Results

Figure 2(a) shows the basic steady-state result in
a square lattice without block capacitors, where the
driver frequency and amplitude was chosen at 290
kHz and 1.75 V, respectively. The gray-scale in the
graph indicates a measure of energy in the electrical
oscillation, obtained from the data by simply squaring
the voltage and averaging over one period. As is evi-
dent, one driven ILM is generated in this lattice cen-
tered at node (3,2). Nearest neighbor oscillations are
also still clearly enhanced, but beyond that the energy
quickly fades into the background excitation. The ILM
energy-profile is illustrated in panel (b), which shows
both x- (black, filled circles) and y-direction (red, open
circles) cuts through the ILM center. The energy con-
centrated at the site of the ILM center is seen to be
roughly six times as large as that found in the wings.
The way that this ILM is experimentally produced be-
comes clear when focusing on the transients immedi-
ately after the driver is turned on: the driver initiates
a modulational instability that quickly breaks up the
uniform mode in favor of localized excitations - a com-
mon route to energy localization in lattices [15, 7].
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Figure 2: Localized distribution of energy in a 6x6
square lattice in response to spatially uniform driving.
(a) Density plot with grayscale indicating power at
each node, and (b) Cuts through the ILM center in
the x- and y-direction (black filled and red open circles,
respectively).

Next, let us turn to a very similar lattice with the
only modification being that block capacitors are in-
cluded. From 1D results, we would expect that this
inclusion now allows for mobility [13]. Indeed, as illus-
trated in Fig. 3(a) and (b), we now observe the ILM
hopping from site to site throughout the lattice - here
from site (4,0) to (4,1). At each site the ILM lingers
for a certain duration (on the order of 100 µs) as it
struggles to overcome the well-known Peierls-Nabarro
(PN) barrier [3]. Finally, it is forced away from the
node via a mechanism that is very similar to the one
reported in the 1D lattice [13]. Specifically, the pres-
ence of the large nonlinear oscillation at the ILM cen-
ter results in a gradual charging of the block capacitor;
the charge on the capacitor, in turn, creates a voltage
which reverse-biases the diode. The end effect is that
the ILM gradually creates a local impurity in the lat-
tice which then repels the ILM.

In Fig. 3(c), the energy at both nodes is plotted as
a function of time. The oscillations seen in the energy
are due to incomplete smoothing over one period. We
observe the gradual buildup of energy in node (4,1)
over a duration of roughly 60 µs. Then, as soon as the
amplitude at both nodes has approximately equalized,
there ensues a rapid drop-off of energy in node (4,0),
and the ILM has completed its transition to (4,1). The
process is then repeated at a later time for node (4,1).
It is interesting to note the asymmetry between the
build-up and release of energy as the ILM enters and
leaves a particular node.

Nevertheless, and contrary to the simpler situation
in 1D, where a clear direction of movement arises, the
motion through the 2D lattice appears to be more com-
plex. Note that given the small size of the lattice, in
addition to the role of inhomogeneities, small ampli-
tude residual excitations (“phonons”) are also impor-
tant in directing the breather motion.

Despite the complex nature of the motion of the
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Figure 3: The square lattice with block capacitors.
f = 300 kHz, Vd = 1.75V . Top: The voltage at each
node is plotted in grayscale at the time within one cy-
cle of maximum ILM amplitude. Bottom: the voltage
profiles of the ILM. (a) and (b) show two snapshots
separated in time by ∆t = 80µs. (c) The energy at
both nodes as a function of time.

breathers, an organizing principle obeyed in both one
and two dimensions is that the ILM never hops back to
the node it occupied prior to its current location due
to some residual capacitor-charge impurity associated
with that node. In the topologically restricted one
dimensional case, this principle necessarily gives rise
to orderly, uni-directional motion. In two-dimensional
hexagonal lattices there are still two choices available
to the ILM, and in a square lattice there are three.
Thus, the motion does not have to be uni-directional.

One interesting comparison we can now examine is
the PN-barrier against breather motion in 1D and 2D
lattices. In 1D, Ref. [16] reported detailed measure-
ment of ILM speed. It was found that the slowest a
single ILM could move in a 1D lattice of 24 nodes was
15 nodes per millisecond (15 a/ms). At those driving
conditions, the ILM center attained a maximum pos-
itive voltage of 2V. From Fig. 3 it is clear that the
maximum voltage-amplitude at the ILM center was
also 2V in the 2D lattice data shown. Since the ILM
speed should be primarily a function of center ampli-
tude [13], we should be able to compare the speeds
directly.

In the 2D square lattice, we observe 42 hopping
events within a 4 ms time span. This corresponds to an
average hopping speed of 10.5 a/ms. As is also true in
1D, the time that an ILM spends at a particular lattice
site can vary due to inhomogeneities in the experimen-
tal lattice, and so we would expect some uncertainty
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Figure 4: Numerical profiles of a stationary breather
in a honeycomb lattice (left), and a square lattice
(right) in the (n,m) plane. The bottom panels show
the Floquet numerical linearization spectrum corre-
sponding to the honeycomb lattice and the square lat-
tice, respectively, confirming the stability of solutions.
The driver has amplitude Vd = 1.5 V and frequency
f = 283 kHz in the honeycomb lattice case, and Vd = 2
V and f = 301 kHz in the square lattice case

in these numbers. Nevertheless, since we are averag-
ing over 42 hopping events, we don’t expect a large
uncertainty in these numbers, certainly no larger than√

42 ∼= 6.5; thus, we would not expect values larger
than 42 + 6.5/2 = 45.25, which is still significantly be-
low the 60 observed in 1D. Therefore, the data appears
to indicate that the PN-barrier is enhanced by going
from one to two lattice dimensions.

In order to find ILMs in our theoretical model, we
have employed the experimental results as seeds for a
shooting method [17] in order to find spatially localized
periodic orbits in the governing differential equations.
Once the exact numerical solutions are identified (up
to a prescribed tolerance), their stability properties are
explored by means of a Floquet analysis [18].

In the case without block-capacitors, we obtain sta-
tionary and stable one-peak breathers, as shown in
Fig. 4. These localized modes are robust, persisting as
long as the driver remains on.

Numerics are generally found to be in good quanti-
tiative agreement with experimental results [12]. Now
that numerical work has confirmed the experimental
results and also, according to the bottom panels of
Fig. 4, established the breather stability in small lat-
tices, we can use these simulations on larger lattices,
where experimental data is missing due to the practi-
cal difficulty in constructing them. Figure 5 shows the
stable numerical breather solutions in larger lattices
without block capacitors for a 21× 21 lattice with pe-
riodic boundary conditions; in a slightly larger lattice
(36× 36), the number of ILMs increases to two.
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Figure 5: Numerical solution (stable) of a stationary
breather in the larger 21× 21 electrical lattice.

It should be noted that these breather solutions in
the larger lattices cannot be continued as the lattice
size is reduced to the solutions shown for instance in
Fig. 4, and they do not connect in a straightforward
way to the breather states seen before in 6 × 6 lat-
tices. Rather, we find that these breather become un-
stable, and even disappear below a threshold lattice
size. More work has to be done to elucidate the rela-
tions between the stable breathers in small lattices and
their corresponding generalizations in larger lattices.

4. Conclusion

We have experimentally induced two-dimensional
energy localization in damped-driven electrical lat-
tices. This was done by first generating breathers via
a modulational instability and then stabilizing them
by continued direct driving. Within particular ver-
sions of these 2D electrical lattices, ILMs become mo-
bile, and they were observed to meander in the lattice
without an apparent directionality. Numerical sim-
ulations, which closely modeled the circuit elements
comprising the unit cell, corroborated these findings
and were able to extend them to larger lattices. Fu-
ture directions include an exploration of possible vor-
tex distribution of localized energy or phase, a fuller
charcterization of localized solutions in larger 2D lat-
tices and in lattices of different shape. This study also
opens up the possibility of analyzing in greater detail
breather-breather and breather-impurity interactions;
another extension of interest would be the introduction
of spatial anisotropy into the 2D lattice via the cou-
pling inductors and the study its effect on ILM shape
and motion.
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