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Abstract—Noise and stochasticity are ubiquitous within
microscopic biological systems. To function stably within
such noise, it has been speculated that biological systems
exploit noise. However, it was recently proposed that a cell
is also equipped with nonlinear dynamics, being properly
designed, to effectively suppress such noise. In order to
clarify the similarity and difference of the two apparently
opposite possibilities, we construct a new mathematical
model that can be employed for the comparison. By using
the model, we analyze qualitative and quantitative proper-
ties of the noise-suppressing and noise-exploiting dynam-
ics.

1. Introduction

One intriguing property of biological systems is the
ubiquity of noise and stochasticity in their behaviors. From
the viewpoint of engineering, such noise and stochasticity
are strong enough to hamper appropriate and stable func-
tion of the systems[1, 2, 3]. Nonetheless, biological sys-
tems can operate robustly and adapt flexibly in changing
environment. This inconsistency between robustness of bi-
ological systems against noise and our intuition that man-
made systems are sensitive to noise has led to an idea that
biological systems may exploit rather than suppress noise
for their reliable operation[4, 5]. Stochastic resonance (SR)
in biological systems is one example in which noise assists
a system to detect very weak signal[6]. Presence of SR
has been tested for various biological sensory systems from
paddlefish[6] to human vision[7]。

While exploitation of noise has been investigated for
the last couple of decades[4], still controversial is whether
noise-exploitation is the fundamental design principle of
living systems or not. For example, recent molecular bio-
logical data has revealed that intracellular networks con-
tain statistically-significant number of negative feedback
loops[8], which are the most typical way to suppress noise
in engineering systems[9]. Therefore, biological systems
seem to actively suppress noise but at the same time they
also seem to exploit it.

On this issue, we recently proposed that dynamic
Bayesian computation may be conducted by intracellular
networks in order to effectively extract environmental in-
formation from very noisy signal[10, 11]. On one hand,

the Bayesian computation is a mechanism to effectively
suppress noise because it is the statistically optimal way to
recover or infer the hidden information from noisy observa-
tion, On the other hand, however, we also revealed that the
Bayesian dynamics is tightly related to noise-induced tran-
sition and bifurcation, indicating that dynamic Bayesian
computation works as if it exploits noise to amplify small
signal[12]. This finding implies that noise-suppression and
noise-exploitation are not mutually exclusive but are over-
lapped concepts.

In this paper, we investigate dynamical properties and
efficiency of information processing of noise-induced dy-
namics by comparing it with SR-like potential-driven dy-
namics.

2. Dynamic Bayesian information processing

In [10, 11], one of the authors derived optimal intracellu-
lar dynamics that can conduct statistically optimal compu-
tation of noisy signal. Here, we briefly describe the model
introduced there.

Let x(t) be the state to which a cell has to respond. x(t)
can be environmental condition or certain intracellular state
such as abundance of energy sources, that of antibiotics, or
regulatory state of promoter for a specific gene. For sim-
plicity, as in [10], we assume that x(t) has only two discrete
states as x(t) ∈ χ ≡ {off, on}. Since x(t) such as environ-
mental state changes unpredictably over time, we model the
dynamics of x(t) by using two-state Markov process whose
transition rate from x(t) = off to x(t) = on and that from
x(t) = on to x(t) = off are ron and roff , respectively[13].

The information on x(t) is transmitted into cell or to other
intracellular molecule by stochastic intracellular reactions.
One typical reaction is receptor activation where receptors
on cell membrane get active stochastically depending on
the state of x(t). Because the state of a receptor is gener-
ally discrete, we describe it with si(t) where si(t) ∈ {0, 1}.
si(t) = 0 and si(t) = 1 mean that i-th receptor is active
and inactive at t, respectively. Each inactive receptor is
assumed to get active with rate λ(x(t))∆t within interval
(t, t + ∆t]. An activated receptor is assumed to get inac-
tive in τ after its activation. The timing of receptor acti-
vations is described as {tk : k ∈ N} where tk is the timing
of the k-th activation. The trajectory of receptor activity
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can also be represented by using Dirac delta function as
y(t) =

∑
k δ(t − tk). We also assume that the total number of

receptors, N0, is constant.
Under these assumptions on the stochastic change of

x(t) and y(t), we can derive posterior probability on x(t)
given the time-series of y(t) as P(xt |y0:t) := P(x, t|{y(t′)|t′ ∈
[0, t]}). Since posterior probability is the sufficient statistics
on the state of x(t) given the trajectory of y(t), P(xt |y0:t) can
be regarded as information on x(t) that y(t) has.

By following sequential Bayes’ theorem, update rule of
P(xt |y0:t) within small interval ∆t can be described as

P(xt+∆t |y0:t+∆t) = P(yt+∆t |xt+∆t)×
∑

x(t)∈χ P(xt+∆t |xt)P(xt |y0:t)
P(yt+∆t |y0:t)

.

For sufficiently small ∆t, we can obtain

P(yt+∆t = y|xt+∆t = x) ≈
[
λ(x)N0∆t

1 − λ(x)N0∆t

]y

(1 − λ(x)N0∆t)

P(xt+∆t = x̃|xt = x) := P(t + ∆t, x̃|t, x) ≈ rx̃∆t

P(xt+∆t = x|xt = x) := P(t + ∆t, x|t, x) ≈ 1 − rx̃∆t,

where x̃ = off when x = on and x̃ = on when x = off. By
taking the limit ∆t → 0, we approximately obtain

dz(t)
dt
= z(t)z̃(t)[λrN0y′(t) − N0λd] + ronz̃(t) − roffz(t), (1)

where z(t) := P(xt |y0:t), z̃(t) := 1 − z(t), λr := log λon
λoff

,
λd := λon − λoff . In the above equation, y′(t) represents
the effective activity of each receptor defined by using in-
dicator function 1A as y′(t) ≈ 1

τN0

∑
k 1[tk ,tk+τ). Since y(t)

and y′(t) contain approximately the same information, we
use y(t) to describe y′(t).

Because of the discrete nature of receptor activation, y(t)
is an approximation of doubly stochastic Poisson process
whose intensity is λ(x(t)). This property is biologically
realistic but mathematically hard to handle analytically.
Thus, we approximate Eq. 1 with Wiener process Wt as

dz =
[
µ(t)zz̃ + γonz̃ − γoffz

]
dt + σzz̃ ◦ dWt, (2)

where σ =
√

2ν/(ron + roff), µ(t) :=
(
α(t) − 1

2

)
σ2, γon :=

ron/(ron + roff), and γoff := roff/(ron + roff)[12]. ν is defined
as

ν := λoffN0[(1 + β) log(1 + β) − β] ≈ 1
2
λ2

dN0

λoff
,

where λon = (1 + β)λoff , and α(t) = 1 when x(t) = on, and
α(t) = 0 when x(t) = off. The stationary distribution can
be analytically obtained as

Pst(z) =
N

(zz̃)2 exp
(
− 2
σ2

[
γoff z̃ + γonz

zz̃
+ γd log

z
z̃

])
, (3)

where N is the normalization constant and γd = γon − γoff .
This representation can be further simplified when γon =

γoff = 1/2 as

Pst(z) =
N exp

[
− 1
σ2

1
zz̃

]
(zz̃)2 .
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Figure 1: Stationary distribution for different values of pa-
rameters. (Upper panel) Pµ0

st (z) for different σ. The other
parameters are γon = γoff = 1/2, and µ0 = 0. (Lower
panel) Pµ0

st (z̄) for different β. The other parameters are
γon = γoff = 1/2, µ0 = 0, and σ = 6.

When µ(t) is constant over time as µ(t) = µ0, then the
stationary distribution becomes

P
µ0
st (z) =

N
zz̃

exp
(
− 2
σ2

[
γoff

z
+
γon

z̃
+ (µ0 + γd) log

z
z̃

])
.

(4)
When γon = γoff = 1/2, we obtain

P
µ0
st (z) =

N exp
[
− 1
σ2

[
1
zz̃ + 2µ0 log z

z̃

]]
zz̃

,

which is depicted in the upper panel of Fig. 1.
If we define Fn(z, µ) := µzz̃ + ronz̃ − roffz and Gn(z̄) :=

σzz̃,then the stationary distribution for constant µ(t) can be
described as

P
µ0
st (z) =

N
Gn(z)2 exp

2 ∫ z̄ Fn(z′, µ0) + σGn(z)
(

1
2 − z

)
Gn(z′)2 dz′

 .
The position of extrema of the stationary distribution, z∗,
satisfies

∂P
µ0
st (z)
∂z

∣∣∣∣∣∣
z=z∗

=
2Pµ0

st (z∗)
Gn(z∗)

[
−dGn(z)

dz
+

Fn(z∗, µ0)
Gn(z∗)

+ σ(
1
2
− z∗)

]
,

=
2Pµ0

st (z∗)
Gn(z∗)

[
Fn(z∗, µ0)

Gn(z∗)
− σ(

1
2
− z∗)

]
= 0.
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Thus, z∗ can be represented as

µ0 = σ
2(

1
2
− z∗) − γon

z∗
+
γoff

z̃∗
, (5)

which is depicted in Fig. 2. If we recognize extrema of sta-
tionary distribution as stochastic counterpart of determinis-
tic equilibrium states, this equation describes the nullcline
of Eq. 2. In addition, when γon = γoff = γ, we can easily
verify that the transition of Pµ0

st (z), i.e., the change in the
number of extrema, occurs when σ2/γ = 8.
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Figure 2: Nullcline (Eq. 5) for different value of σ.

However, if noise intensity is zero, σ = 0, then Eq. 2 has
only single stationary and stable state because Fn(z) = 0
has only one solution. Therefore, emergence of new sta-
ble state is purely induced by noise[12]. This phenomenon
has been known as pure noise-induced transition since
1970s[14]. As clarified in [12], this result indicates that
binary information processing by dynamics Bayesian com-
putation naturally accompanies the property to show noise-
induced transition, implying that optimal information pro-
cessing may be linked to noise-induced phenomena.

3. Potential-driven dynamics for Information process-
ing

The relation between Bayesian computation and noise-
induced bimodality looks similar to that between stochas-
tic resonance and potential-induced bistability. This simi-
larity naturally raise a question on the difference between
these two phenomena. In order to compare Eq. 2 with a
potential-induced bistable system, we consider the follow-
ing dynamics:

dz̄ = β(µ(t)dt + σdWt + H(z̄)dt), (6)

where H(z̄) is the potential of the system. For comparison
of the efficiency to extract the information on µ(t) from the
input µ(t)dt + σdWt, we introduce µ(t)dt + σdWt as the
external signal to the system in Eq. 6. β is the amplification
ratio of the input.

The stationary distribution of z̄ for constant µ(t) as µ(t) =
µ0 can be described as

P
µ0
st (z̄) =

N
Gd(z̄)2 exp

[
2
∫ z̄ Fd(z̄′, µ0)

Gd(z̄′)2 dz̄′
]
, (7)

where Fd(z̄, µ) = β(µ+H(z̄)) and Gd(z̄) = βσ. The position
of extrema of the stationary distribution, z̄∗, satisfies

∂P
µ0
st (z̄)
∂z̄

∣∣∣∣∣∣
z̄=z̄∗

=

[
2Fd(z̄, µ0)

Gd(z̄)2 − 1
Gd(z̄)2

∂Gd(z̄)2

∂z̄

]
z̄=z̄∗

=
2Fd(z̄∗, µ0)

Gd(z̄∗)2 = 0.

Thus, we have µ0 = −H(z̄∗). Since the nullcline of Eq. 2 is
µ0 = σ

2( 1
2 − z∗)− γon

z∗ +
γoff
z̃∗ , Eq. 6 has the same nullcline as

Eq. 2 when

H(z̄) = −σ2(
1
2
− z∗) +

γon

z∗
− γoff

z̃∗
,

is satisfied. Then the stationary distribution Pµ0
st (z̄) can be

obtained as

Pd
st(z̄) = N [

z̄γon (1 − z̄)γoff
]2/(βσ2) exp

2 µ0
σ2 z̄ − z̄˜̄z

β

 ,
which is depicted in the lower panel of Fig. 1.

Because intensive search for all possible function H(z̄)
is not feasible, we compare Eqs. 2 and 6 under the condi-
tion that they share the same nullcline structure. Under this
condition, β is the only parameter that should be optimized
for comparison.
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Figure 3: Sample trajectories of Eq. 2 (upper panel, blue)
and 6 (lower panel, red). Yellow regions designate that
α(t) = 1. The parameters are γon = γoff = 1/2, σ = 7.7460,
and β = 1/8. Because of stiffness of Eq. 6, we added some
rules near z(t) = 0 or z(t) = 1 that can suppress the diver-
gence of simulation.This modification may not influence
the result obtained here.

4. Comparison of information processing by noise-
induced and potential-driven dynamics

In order to compare the behavior of Eqs. 2 and 6 in
response to µ(t) and dW(t), we simultaneously simulated
both equations to which we used the same realization of
µ(t) and dW(t). Figure 3 shows sample trajectories of Eqs.
2 and 6. As easily observed, the trajectory generated by
Eq. 6 contains fluctuation with higher frequency than Eq.
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2 near z(t) = 0 or z(t) = 1, suggesting that high frequency
noise is not suppressed by the potential induced dynamics.

However, the performance of Eq. 6 depends on the pa-
rameter β. We quantified Error rate (ER) of Eq. 2 and Eq.
6 for different values of β as shown in Fig. 4. As clearly
observed, Bayesian dynamics (Eq. 2 ) is always better than
Eq. 6 in terms of reconstructing the behavior of x(t) from
noisy signal.
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Figure 4: Ratio of error rates of Eq. 2 and Eq. 6. Error
rate of a trajectory z(t) is defied as E(z) :=

∫
|1[1/2,1]z(t) −

α(t)|dt′ where 1A is an indicator function of a set A. The
ratio R is defined as R := E(z̄)/E(z) for each realization of
the pair (x(t),W(t)). Each points for a given β corresponds
to different realization of the pair. The number of points
are 800 for a fixed value of β. The other parameters other
than β is the same as in Fig. 3. R is always greater than 1
irrespective of realization.

5. Summary and Discussion

In this paper, we investigated the information processing
of noisy signal by Bayesian dynamics with noise-induced
bimodality and stochastic resonant (SR) dynamics with
potential-induced bimodality. Our numerical evaluation in-
dicates that Bayesian dynamics is always better than the
stochastic resonant dynamics. Apart from the quantitative
difference between Bayesian and SR dynamics, they have
other qualitative similarity and differences that will be ad-
dressed in the future work.
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