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Abstract—A mean-field model for coupled excitable
oscillators is introduced to analyze noise-induced synchro-
nization. A nonlinear Fokker-Planck equation approach al-
lows us to study the effects of noise on the system only by
dealing with deterministic nonlinear dynamics. Taking the
thermodynamic limit, we derive the time evolution equa-
tions of the order parameters for the system without any
approximations. A bifurcation diagram for the order pa-
rameters is shown compared to collective behavior of the
oscillators obtained by direct simulation of the set of the
Langevin equations with changes in noise intensity.

1. Introduction

Effects of noise on synchronization phenomena in os-
cillatory systems have attracted much attention in many
fields of natural sciences in recent years. On one hand,
one can easily suppose that the presence of noise might de-
teriorate the degree of synchronization of oscillatory sys-
tems. On the other hand, the counterintuitive phenomena
of noise induced synchronization are intensively studied in
many types of oscillatory systems [1–3]. Synchronization
phenomena induced by independent white noise in coupled
excitable oscillators including active rotator models are in-
vestigated both analytically [4–10] and numerically [11].

To understand how noise exerts its influence on the struc-
ture of synchronization will be of great importance for the
purpose of nonlinear dynamical controls involving changes
in synchrony of oscillatory systems. So far as we know,
there are very few papers that concern analytical studies of
the relationships between noise effects and synchronization
in the case of coupled excitable oscillators without any ap-
proximations.

For the definition of synchronization in coupled ex-
citable oscillator systems under the influence of noise, let
us consider relationships between behavior of statistical
quantities and dynamical variables in oscillatory systems.
In a deterministic system of the coupled excitable oscilla-
tors, the synchronization phenomena are well-defined by
the condition that all of the dynamical variables of the
system take periodic motion with a common time period.
However, in a stochastic system of a finite number of cou-

pled excitable oscillators which is subjected to independent
noise, each oscillator behaves randomly due to the presence
of noise. The corresponding Fokker-Planck equation [12]
involving all of the dynamical variables which describe the
system of many body oscillators is linear. The probability
density of the system as its solution, in general, exhibits
ergodic property to settle into equilibrium (i.e. fixed point
type) probability density for sufficiently large times. Order
parameters of the system do not oscillate even if individ-
ual oscillators periodically behave in the deterministic case.
Therefore it seems to be difficult to appropriately define the
synchronization phenomena in this situation.

To consider the synchronization phenomena in a system
of coupled excitable oscillators with noise by overcoming
the problem mentioned above, let us introduce the con-
cept of taking the thermodynamic limit with mean-field
coupling. Taking advantage of these issues, it is useful
to employ the nonlinear Fokker-Planck equation (NFPE)
approach [13–16]. In a mean-field coupling model where
all of the oscillators are coupled by each other, the law
of large numbers can be applied. As a consequence, the
Fokker-Planck operator itself includes empirical probabil-
ity density of the system and the Fokker-Planck equation
becomes nonlinear. Now that the system loses ergodicity,
it can exhibit a rich variety of bifurcations corresponding
to nonequilibrium phase transitions. The empirical prob-
ability density of a coupled oscillatory system might be
multimodal with weak external noise. However, in some
solvable models with the validity of an H theorem for an
NFPE [10,17,18] or under the assumption of Gaussian ap-
proximations [8], it takes unimodal form. In such a situa-
tion, when the mean value of individual oscillators is con-
stant corresponding to a fixed point type attractor, those os-
cillators behave randomly without any correlation. When
the averaged dynamical variable between the oscillators is
periodic corresponding to limit cycle type attractor, it sug-
gests synchronized oscillatory states under the influence of
noise as a result of cooperative phenomena.

In this paper, we propose a model of mean-field cou-
pled excitable oscillators under the influence of the external
Langevin noise. Satisfying self-averaging property, we ob-
tain the time evolution of the order parameters for the sys-
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tem without approximations. Conducting bifurcation anal-
yses, we show a bifurcation diagram for the order parame-
ters of the system compared to numerical simulation with
changes in noise strength. Part of this work has been briefly
reported in the conference proceedings [10].

2. A Coupled Excitable Oscillator Model

To understand the effects of noise on synchronization in
an infinitely many coupled excitable oscillator system ex-
actly, let us consider the following form of stochastic dif-
ferential equations [10]:

dZ(x)
i

dt
= −a(x)Z(x)

i +
1
N

N∑
j=1

J(x)F(x)(Z̃(x)
j ) + I + η(x)

i (t),

(1)

dZ(y)
i

dt
= κ(−a(y)Z(y)

i +
1
N

N∑
j=1

J(y)F(y)(Z̃(y)
j )) + η(y)

i (t), (2)

where Z̃(µ)
j = b(µ,x)Z(x)

j + b(µ,y)Z(y)
j (i = 1, ...,N)(µ = x, y).

Z(µ)
i is a real-valued random dynamical variable of an os-

cillator and a(µ), b(µ,ν), J(µ) are constants, I is the applied
current and F(µ)(·) is a coupling function. The parameter
κ is introduced so that Z(x)

i become fast variables and Z(y)
i

slow ones. To make an individual oscillator excitable, we
specify F(x)(·) and F(y)(·) as nonlinear and linear functions
as

F(x)(Z) = Z exp
(
−Z2

2

)
, (3)

F(y)(Z) = Z. (4)

We postulate that the Langevin noise η(µ)
i (t) is white Gaus-

sian one, ⟨η(µ)
i (t)⟩ = 0, ⟨η(µ)

i (t)η(ν)
j (t′)⟩ = 2D(µ)δi jδµνδ(t− t′).

In the absence of noise, Eqs. (1) and (2) with N = 1 recover
1-body deterministic oscillatory system which dynamical
behavior is shown in Fig 1.

3. Nonlinear Fokker-Planck Equation Approach

The set of the Langevin equations (1) and (2) can be re-
duced to a single body equation as seen below in the ther-
modynamic limit N → ∞. The mean-field coupling terms
satisfy the self-average property, which is written by the
empirical probability density P(t, Z) (ZT = (Z(x), Z(y))) as

⟨F(µ)⟩ ≡
∫

dZ(x)dZ(y)F(µ)(b(µ,x)Z(x)+b(µ,y)Z(y))P(t, Z). (5)

Then the system consisting of Eqs. (1) - (2) is indeed re-
duced to the single body dynamics Z(x) and Z(y) as

dZ(x)

dt
= −a(x)Z(x) +J(x)⟨F(x)⟩ + I + ζ(x)(t),

dZ(y)

dt
= κ(−a(y)Z(y) +J(y)⟨F(y)⟩) + ζ(y)(t),

with white Gaussian noise ζ(µ)(t) as ⟨ζ(µ)(t)⟩ = 0,
⟨ζ(µ)(t)ζ(ν)(t′)⟩ = 2D(µ)δµνδ(t − t′). ⟨·⟩ denotes the average
over P(t, Z). Thus, one obtains the NFPE for the empirical
probability density corresponding to the above Langevin
equations,

∂

∂t
P(t,Z(x),Z(y)) =

− ∂
∂Z(x)

[
−a(x)Z(x) + J(x)⟨F(x)⟩ + I − D(x) ∂

∂Z(x)

]
P

− ∂
∂Z(y)

[
κ(−a(y)Z(y) + J(y)⟨F(y)⟩) − D(y) ∂

∂Z(y)

]
P. (6)

A Gaussian probability density is a special solution of
the NFPE (6). Since the H theorem [17] ensures that the
probability density satisfying Eq. (6) converges to the
Gaussian-form for sufficiently large times, it is enough that
we only treat the Gaussian probability density as

PG(t,Z(x), Z(y)) =
1

2π
√

det CG(t)
exp

[
−1

2
sT

G C−1
G (t)sG

]
,

sT
G = (Z(x) − ⟨Z(x)⟩G, Z(y) − ⟨Z(y)⟩G) ≡ (U(x), U(y)),

CGµν(t) = ⟨sµsν⟩G,

where ⟨·⟩G denotes expectation over PG. Then, the coupling
term Eq. (5) is described only up to the second moments.
Hence, one has a set of closed ordinary differential equa-
tions as

d⟨Z(x)⟩G
dt

= −a(x)⟨Z(x)⟩G + J(x)⟨F(x)⟩G + I, (7)

d⟨Z(y)⟩G
dt

= κ(−a(y)⟨Z(y)⟩G + J(y)⟨F(y)⟩G), (8)

d⟨U(x)2⟩G
dt

= −2a(x)⟨U(x)2⟩G + 2D(x), (9)

d⟨U(y)2⟩G
dt

= −2κa(y)⟨U(y)2⟩G + 2D(y), (10)

d⟨U(x)U(y)⟩G
dt

= −(a(x) + κa(y))⟨U(x)U(y)⟩G, (11)

where one has from Eqs. (3) - (4)

⟨F(x)⟩G =
m(x)

(σ2 + 1)3/2 exp
− m(x)2

2(σ2 + 1)

 , (12)

⟨F(y)⟩G = m(y), (13)

and m(µ) = b(µ,x)⟨Z(x)⟩G + b(µ,y)⟨Z(y)⟩G, σ2 = b(x,x)2⟨U(x)2⟩G +
b(x,y)2⟨U(y)2⟩G. Note that ⟨U(x)U(y)⟩G → 0, ⟨U(x)2⟩G →
D(x)/a(x), and ⟨U(y)2⟩G → D(y)/(κa(y)) (t → ∞), implying
that the external Langevin noise contributes to the dynam-
ics through the variance. For simplicity, we assume the
Langevin noise intensity D(y) = 0 in what follows.

To understand nonlinear aspects of the dynamical sys-
tem obtained by Eqs. (7)-(11) together with Eqs. (12) and
(13), we conduct bifurcation analyses shown in Fig 2. The
bifurcation of the order parameters for the system from
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fixed point type to limit cycle type attractor occurs with
increasing noise intensity, which corresponds to the asyn-
chronous to synchronous phase transition. Further increase
of noise strength makes the individual oscillators to behave
randomly. We can see the good agreement with numeri-
cal simulation calculated by directly solving the original
Langevin equations.

4. Conclusion

We have introduced a mean-field model for coupled ex-
citable oscillators to analyze noise-induced synchroniza-
tion. An NFPE approach has enabled us to investigate
the effects of noise on the system only by dealing with
deterministic nonlinear dynamics. Taking the thermody-
namic limit, the time evolution equations of the order pa-
rameters for the system have been derived without any ap-
proximations. A bifurcation diagram for both theoretically
and numerically collective behavior of the oscillators with
changes in noise intensity has been shown.
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Figure 1: Excitable behavior of our model without noise.
(a) The time evolution of Z(x). Z(x) gets excited only by
large enough strength of the perturbation δ(t) given in the
form of a short pulse at t = 550.0, 850.0: I(t) = I + δ(t). (b)
Nullclines in the phase plane. Z(x) and Z(y) correspond to
fast and slow variables, respectively. At I = −2.5, the tra-
jectory converges to the stable node after sufficiently large
times. The model parameter values are a(x) = 1.6875,
a(y) = 2.0925, b(x,x) = 0.87750, b(x,y) = −0.33750, b(y,x) =

2.7000, b(y,y) = −0.67500, J(x) = 6.0000, J(y) = 2.8350,
and κ = 0.0068000.
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Figure 2: Bifurcation diagram of the system of coupled
excitable elements under the influence of noise. Bifur-
cation analyses are conducted for the obtained order pa-
rameter system. Numerical simulation for the set of the
original Langevin equations is also conducted using Euler-
Maruyama method. The theoretical solid curves for the
order parameters are good agreement with the numerical
simulation, except for near the bifurcation point due to fi-
nite size effect. Hs and Hu, and FLC denote the supercrit-
ical and subcritical Hopf bifurcation, and fold limit cycle,
respectively.
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