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Abstract—Quantum particles such as electrons and
photons have wave-particle duality. In this paper, we re-
gard an electron in a simple electron-wave interference sys-
tem as a classical particle on which random force acts and
its behavior as a stochastic process. We applied the Nel-
son’s stochastic quantization theory to the construction of
the stochastic process and confirmed by numerical simu-
lation that the stochastic process has the same probability
density function with that determined by wave functions of
the Schrödinger equation describing the interference sys-
tem. This primary study will be useful to model quantum
effect devices so as to solve difficulty and reduce complex-
ity in the simulation of electronic circuits built of the de-
vices.

1. Introduction

Various kinds of quantum effect devices are being de-
veloped as successors of MOS FETs. It will be neces-
sary to construct time domain models of the quantum ef-
fect devices for circuit simulations. Quantum particles
such as electrons and photons have wave-particle duality.
The Schrödinger equations describe behavior of quantum
particles as wave propagation. It is often a difficult or
time-consuming task to obtain samples of particle location
whose probability distribution obeys a wave function ob-
tained by solving the Schrödinger equation.

On the other hand, a conception regards a quantum parti-
cle as a classical particle on which random force acts and its
behavior as a stochastic process. Theories within the con-
ception construct a stochastic process which has the same
probability density function with that determined by the
wave function of the Schrödinger equation. The construc-
tion is called stochastic quantization. If a stochastic quan-
tization method can be applied to modeling quantum effect
devices, the difficulty or complexity to simulate quantum
circuits can be effectively reduced.

In this paper, we construct a probabilistic lumped param-
eter model of an electron-wave interference system as a pri-
mary study on modeling quantum effect devices including
quantum interference effect transistors [1]. The construc-
tion is based on the Nelson’s stochastic quantization the-
ory [2]. Past applications of the theory are tunneling effect
analyses [3].

2. Nelson’s Stochastic Quantization

A state x(t) ∈ RN of a quantum system is described by
the Schrödinger equation

i~
∂ψ(x, t)
∂t

=

{
− ~

2

2m
∇2 + V(x)

}
ψ(x, t) (1)

Solution ψ(x, t) : RN × R → C of the equation is called a
wave function. On the other hand, a classical probabilistic
system with state x(t) is described by the Fokker-Planck
equation

∂ρ(x, t)
∂t

=

{
−∇ · b(x, t) +

ν

2
∇2

}
ρ(x, t) (2)

whose solution is a probability density function ρ(x, t) :
RN × R → R of the state. A probabilistic lumped param-
eter system whose state distribution is governed by Eq. (2)
has a potential U(x, t) such that

−∇U(x, t) = b(x, t) (3)

and described by the Langevin equation,

dx(t)
dt
= b(x, t)+

√
ν

2
Γ(t), Γ(t) = (Γ1(t), · · · ,ΓN(t)) (4)

where Γi(t), i = 1, · · ·, N, is a white Gaussian noise with the
following correlation property:

Γi(t)Γ j(t′) =
{
δ(t − t′) if i = j
0 if i , j (5)

Nelson’s stochastic quantization theory [2] asserts that if

u(x, t) + i v(x, t) = ν∇ lnψ, (6)
u(x, t) = b(x, t) + b∗(x, t),
v(x, t) = b(x, t) − b∗(x, t)

then,
ρ(x, t) = |ψ(x, t)|2 (7)

Mean backward velocity b∗(x, t) in Eq. (6) is a term con-
tained in the following backward Fokker-Planck equation:

−∂ρ(x, t)
∂t

=

{
∇ · b∗(x, t) +

ν

2
∇2

}
ρ(x, t) (8)
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Figure 1: An Aharonov-Bohm thought-experimental system.

The assertion means that a classical probabilistic lumped
parameter system (4) corresponding to a quantum system
(1) can be constructed by giving the classical system a gra-
dient of potential and magnitude of random noise satisfying
Eq. (6).

Many methods were developed to get sample random
numbers whose probability distribution follows a specified
function. One of them is the inverse transform sampling
method [4]. Let f = ( f1, f2, · · ·, fN+1) be a vector function
which transforms random vectors r = (r1, r2, · · ·, rN+1) with
uniform probability distribution to the samples of (x, t) =
(x1, x2, · · ·, xN , t) whose probability density function is
given by Eq. (7), that is

x1
x2
· · ·
xN

t

 =


f1(r1, r2, · · · , rN+1)
f2(r1, r2, · · · , rN+1)

· · ·
fN(r1, r2, · · · , rN+1)

fN+1(r1, r2, · · · , rN+1)

 (9)

Then, f must satisfy

ρ(x, t) =
∂ f −1

1

∂x1
·
∂ f −1

2

∂x2
· · · ·

∂ f −1
N+1

∂t
(10)

Generally, it is a difficult problem to find such transforma-
tion. The rejection sampling method [5] is another method
of getting sample random numbers which obey a speci-
fied probability distribution. The method does not require
transformation function f . However, its execution time in-
creases exponentially with N. On the other hand, Nelson’s
stochastic quantization does not require f and its execution
time is in the order of N2.

3. An Electron-Wave Interference Phenomenon

A micro-scale double-slit causes interference between
quantum waves. Another quantum wave-interference sys-
tem was proposed by Aharonov and Bohm [6]. Fabrication

technology for micro-electronics including nano-carbon
electronics makes it possible to construct Aharonov-Bohm
(AB) systems. They are expected to be developed to novel
electronic devices. Constructing AB systems was impor-
tant not only for micro-electronics engineering but also for
experimental physics in that the system could detect vector
potential [7].

Figure 1 shows a thought-experimental AB system con-
taining an infinitely long coil. Vector potential A(x), x =
(x1, x2, x3) ∈ R3, outside the coil satisfies

B = rot(A(x)) (11)

where B stands for the flux inside the coil. An electron
getting out of an electron source passes by either left or
right side of the coil and reaches to the screen. Let the
wave function of the electron be denoted by ψ(x, t). An-
other wave function φ(x, t) related to ψ(x, t) as

ψ(x, t) = exp(i θ(x))φ(x, t), ∇θ(x) = − e
~

A(x) (12)

satisfies

i~
∂φ(x, t)
∂t

=

{
− ~

2m
∇2 + V(x)

}
φ(x, t) (13)

Equations (12) and (13) imply that the vector potential af-
fects the phase of the wave function. Thus, the interference
pattern on the screen changes depending indirectly on flux
B.

4. Stochastic Process Modeling of a Simple Interfer-
ence System

Figure 2 shows a double-slit system in which vector po-
tential act on electrons. An electron passing through left
or right slit moves on vector potential Al(x) or Ar(x) and
reaches to the screen. We denote the phase shift of the wave
function of the electron caused by Al/r(x) by ∆θl/r.
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Figure 2: A simple electron-wave interference system.

We will construct a classical probabilistic particle model
of electrons moving in the double-slit system and compute
probability distribution of location x at which the elec-
tron attains on the screen by integrating numerically the
Langevin equation describing the classical model.

The numerical experiment is carried out on the follow-
ing conditions: Distance L from the slits to the screen is
L = 5. Distance d between the two slits is d = 1. Aver-
age x2-directional component of the speed of an electron is
L/5 at the slits. The wave function of an electron is given
in x1-direction by the following Gaussian distribution with
variance a = 0.2 around the two slit at time t = 0:

ψl(x1, 0) =
1

π1/4
√

a
exp

(
−1

2
(x1 + d)2

a2

)
(14)

ψr(x1, 0) =
1

π1/4
√

a
exp

(
−1

2
(x1 − d)2

a2

)
(15)

Solving the Schrödinger equation with initial distribu-
tions (14) and (15) of wave functions, we obtain evolution
of wave functions ψl(x1, t) and ψr(x1, t) of an electron pass-
ing through the slits. According to Eq. (6), the superposi-
tion

ψ(x1, t) = ψl(x1, t) + ψr(x1, t) (16)

provides gradient b(x1, t) of potential U(x1, t) and magni-
tude ν of random force in the Langevin equation (4).

Figure 3 shows x1-directional probability distributions
obtained by numerically integrating the Langevin equation
when (∆θl, ∆θr) = (0, 0) and (−π/2, π/2). Mass of electrons
and the Planck’s constant are normalized as m = 1 and ~ =
1 in the computation. Along with the distribution, the fig-
ure shows a probability density function obtained from the
superposition (16).

Numerical results

|Ψ|2

location x1

location x1

Numerical results

|Ψ|2

Figure 3: Probability distribution of the locations at which elec-
trons attains when (∆θl, ∆θr) = (0, 0) (Upper) and (−π/2, π/2)
(Lower).

5. Conclusions

We applied the Nelson’s stochastic quantization the-
ory to an electron-wave interference phenomenon which
is usually described by a partial differential equation, the
Schrödinger equation. The theory derived a probabilis-
tic ordinary differential equation, the Langevin equation,
and provided sample paths of electrons. Then, we found
correspondence between the distribution of the probabil-
ity of positions at which electrons attain through the paths
with probability distribution obtained from the Schrödinger
equation. We saw experimentally that the difference be-
tween the two distributions decreased with the number of
sample paths. Theoretical analysis of the differences is one
of our future works.

Our other future works include suitability assessment of
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several different stochastic quantization methods for time
domain simulation of electronic circuits built of quantum
effect devices.
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