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Abstract—The dispersion of trajectories in chaotic sys-
tems with spatial translational symmetry is referred to as
deterministic diffusion. In a previous study, one of the au-
thors showed that quasiperiodically forced systems with
strange nonchaotic attractors (SNAs) produce anomalous
diffusion characterized by nonlinear time evolutions of the
variance. In the present study, we investigate anomalous
diffusion generated by quasiperiodically forced maps with
SNAs both numerically and experimentally. Due to SNAs,
subdiffusion was observed in numerical simulations but in
the experiment using an electronic circuit subdiffusion was
not clearly observed due to the effect of noise. Neverthe-
less, we observed large fluctuations of local slope in the
time evolution of the variance for the case of SNA.

1. Introduction

The one-dimensional random walk is a well known dif-
fusion process. The variance (or mean square displace-
ment) ⟨x2

n⟩ of the random walkers grows linearly in time.
Similarly, in a discrete time chaotic system, a partial sum
xn =

∑n
i=1 vi of chaotic variablesvi shows a diffusive pro-

cess. The dispersion of the ensemble ofxn is called a
chaotic diffusion. In typical chaotic systems, where the au-
tocorrelation fuction⟨vnvn+τ⟩ decays exponentially fast, the
variance⟨x2

n⟩ grows linearly in time. A type of diffusion
with a linear growth of variance is called normal diffusion.

A strange nonchaotic attractor (SNA) is a geometrically
strange attractor for which typical orbits have nonposi-
tive Lyapunov exponents [1]. SNAs typically appear in
quasiperiodically forced dynamical systems and possess in-
termediate properties between quasiperiodicity and chaos
[2]. Mitsui and Aihara recently show that SNAs appear in
several models of glacial cycles [3]. The aim of this study is
to elucidate statistical properties of SNAs (especially, dif-
fusion properties) from both theoretical and experimental
points of view.

It is reported that the partial sumxn =
∑n

i=1 vi of a
variable vi of an SNA does not show normal diffusion
but anomalous diffusion, where the variance grows loga-
rithmically ⟨x2

n⟩ ∼ logn [4, 5] or sublinearly⟨x2
n⟩ ∼ nα

(0 < α < 1) [5]. In the present study, the such anomalous
diffusion properties are shown for SNAs in a quasiperiod-
ically forced map and an SNA observed in an experiment
using an electronic circuit.

2. Subdiffusion due to antipersistence

Let us consider a diffusion process of “particles” on the
real line. The position of a particlexn at timen = 0, 1,2, ...
is written as

xn = x0 +

n−1∑
k=0

vk, (1)

wherevn is a step size. Assume{vn} to be awide sense
stationary process, which satisfies⟨vn⟩ = constant and
⟨(vn − ⟨vn⟩)(vn+τ − ⟨vn+τ⟩)⟩ = c(τ). Here ⟨·⟩ denotes an
ensemble average, and the covariance c(τ) is independent
of n. The most basic quantities for the density distribution
are themean displacement⟨xn − x0⟩ and thevariance

⟨σ2(n)⟩ = ⟨(xn− x0−⟨xn− x0⟩)2⟩ = ⟨(xn− x0)2⟩−⟨xn− x0⟩2.
(2)

To characterize the temporal behavior of the variance,
we use thelocal scaling exponentα(n) such that

⟨σ2(2n)⟩ = 2α(n)⟨σ2(n)⟩. (3)

Theaverage scaling exponentin the time interval [2m,2M]
is defined by

αm,M =
1

M −m

M−1∑
k=m

α(2k). (4)

Then, we have⟨σ2(2M)⟩ = 2αm,M (M−m)⟨σ2(2m)⟩. If the
variance⟨σ2(n)⟩ grows roughly as a power law,αm,M is
approximately-constant for large time differenceM − m,
namely,

αm,M ≃ α. (5)

If Eq. (5) holds forM = log2 n andm = 0, the variance is
written as

⟨σ2(n)⟩ ∼ nα (n→ ∞). (6)

- 322 -

2013 International Symposium on Nonlinear Theory and its Applications
NOLTA2013, Santa Fe, USA, September 8-11, 2013



The diffusion is callednormal diffusion if α = 1, and it
is calledanomalous diffusion if α , 1. Especially,sub-
diffusion corresponds to 0< α < 1, andsuperdiffusion
corresponds to 1< α < 2.

The behavior of the variance⟨σ2(n)⟩ is related to thecor-
relation coefficient C(n) between successive increments in
n units of time:

C(n) =
⟨(x2n − xn − ⟨x2n − xn⟩)(xn − x0 − ⟨xn − x0⟩))⟩

[⟨(x2n − xn − ⟨x2n − xn⟩)2⟩⟨(xn − x0 − ⟨xn − x0⟩)2⟩] 1
2

.

(7)
Under the assumption of stationarity, the correlation coeffi-
cientC(n) can be written asC(n) = ⟨σ2(2n)⟩/(2⟨σ2(n)⟩)−1.
Using Eq. (3), the local scaling exponentα(n) is given as

α(n) = 1+ log2[1 +C(n)]. (8)

From Eqs. (4) and (8), the values ofα(n) can be classified
as follows: The negative correlation−1/2 < C(n) < 0 for
n = 2k (k = m, ...,M − 1), calledantipersistence, means
subdiffusion with 0< αm,M < 1, the positive correlation
0 < C(n) < 1 for n = 2k (k = m, ...,M − 1), calledper-
sistence, means superdiffusion with 1< αm,M < 2, and the
absence of correlationC(n) = 0 forn = 2k (k = m, ...,M−1)
means normal diffusion withαm,M = 1.

If {vt} is ergodic, we have⟨vt⟩ = vt and⟨vtvt+n⟩ = vtvt+n,
where the right-hand-sides are the long time averages with
respect tot. Then, the ensemble averaged variance⟨σ2(n)⟩
can be replaced by the time averaged varianceσ2(n) =
(xt+n − xt)2 − (xt+n − xt)2 along a typical trajectory, that is,

⟨σ2(n)⟩ = σ2(n).

3. Numerical study

Let T1 = R/Z, the unit circle. The quasiperiodically
forced sine mapM : T1 × R→ T1 × R is given by [7, 4]

θn+1 = θn + ω (mod 1),

xn+1 = xn +
a
2π

sin(2πxn) + ε sin(2πθn),

wherea and ε are parameters andω is irrational. If we
considerxn on T1 by taking modulo 1,M reduces to the
quasiperiodically forced sine circle map̃M onT2.

When M̃ has an attractor, the attractor can be clas-
sified using the conditional Lyapunov exponentλ =
limn→∞(1/n) ln |∂xn/∂x0| and the phase sensitivity expo-
nentν [6], which measures the sensitivity of the attractor
with respect to changes in the phaseθn. The attractor is a
two-frequency quasiperiodic attractor ifλ < 0 andν = 0, a
three-frequency quasiperiodic attractor ifλ = 0, an SNA if
λ < 0 andν > 0, or a chaotic attractor ifλ > 0 [7, 4].

In what follows, we setε = 2.5 andω = (
√

5 − 1)/2,
the golden mean. In a previous study, we showed thatM̃
has a quasiperiodic attractor fora < 0.850 23, an SNA for
0.850 23< a < ac (ac ≈ 1.828 7), and a chaotic attractor
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Figure 1: (a) SNA fora = 1.7. (b) Separation of trajectories
xn with slightly different initial phasesθ0 = 0 and 10−4.

for a > ac. Figure 1(a) shows the SNA fora = 1.7. The
phase sensitivity of SNA causes the diffusion of xn with
different initial phasesθ0 (see Fig. 1(b)).

We calculate the variance⟨σ2(n)⟩ given by Eq. (2) for
an ensemble of 5000 trajectories initially distributed uni-
formly over the region−0.5 ≤ x ≤ 0.5, 0≤ θ < 1. For each
trajectory, the first 5000 iterations were discarded consider-
ing them transients, and the 5001st state was set to (x0, θ0).
SinceM is symmetric with respect to the transformation
(x, θ) → (−x, θ + 1/2 (mod 1)), we have⟨xn − x0⟩ = 0 and
⟨σ2(n)⟩ = ⟨(xn − x0)2⟩.

In a parameter region corresponding to SNAs (1.65 .
a < ac), the variance⟨σ2(n)⟩ grows roughly as a power
law, as shown in Fig. 2(a), although there exist deviations
from strict power laws, which are rather conspicuous when
a is far from the transition pointa = ac. Figure 2(b) shows
the exponentα as a function ofa, which is estimated in
the interval [220, 230] (≈ [106, 109]). This result shows that
M roughly exhibits subdiffusion with 0< α < 1 near the
transition point to chaos. In the parameter region corre-
sponding to chaotic attractors (a > ac), we observe normal
diffusion withα = 1 [see Figs. 2(a) and 2(b)]. We suppose
that the crossover from subdiffusion to normal diffusion oc-
curs ata = ac because the exponentα ata = ac approaches
1 asmand (M −m) increase.

Figures 3(a) and 3(b) show the correlation coefficient
C(n) and the local scaling exponentα(n) for a = 1.7 (SNA)
anda = 2.0 (chaos), respectively. It is shown that the subd-
iffusion with 0< α(n) < 1 is caused by the antipersistence
−1/2 < C(n) < 0 for largen. On the other hand, the nor-
mal diffusion withα(n) = 1 is caused by the decay of the
correlationC(n) = 0 for largen. Therefore, the crossover
from subdiffusion to normal diffusion results from the loss
of antipersistence owing to the transition from strange non-
chaotic to chaotic dynamics.

It should be mentioned that the diffusion process is er-
godic. As shown in the inset of Fig. 2(a), the values of
⟨σ2(n)⟩ andσ2(n) are identical.
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Figure 2: (a) Evolution of the variance⟨σ2(n)⟩ for differ-
ent values ofa below and aboveac ≈ 1.828 7. Data are
plotted at timesn = 2k (k = 1,2, ..., 29). Inset shows
the values of⟨σ2(n)⟩ andσ2(n), which are almost identi-
cal. (b) Scaling exponentα as a function ofa. The ex-
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Figure 3: (a) Correlation coefficientC(n) between succes-
sive increments inn units of time fora = 1.7 (blue open
circle) anda = 2.0 (red open square). The value ofC(n)
is calculated by using Eq. (7). (b) Local scaling expo-
nentα(n) for a = 1.7 (blue open circle) anda = 2.0 (red
open square). The value ofα(n) is calculated by using
Eq. (3). In both panels, data are plotted at timesn = 2k

(k = 0,1, ..., 29).
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Figure 4: Attractor of map (9). (a) SNA simulated forb =
0.13 V. (b) SNA experimentally obtained forb = 0.13 V.
(c) Chaotic attractor simulated forb = 0.05 V. (d) Chaotic
attractor experimentally obtained forb = 0.05 V.

4. Experimental Study

In our previous study [8], we generated SNAs and
chaotic attractors in a switched-capacitor integrated circuit
[9]. In the present study, we analyze diffusion properties of
the SNAs and chaotic attractors obtained in [8]. The circuit
was designed to implement the chaotic neuron model [10]
under quasiperiodic forcing as follows:

θn+1 = θn + ω (mod 1),

vn+1 = kvn + c f(vn + bcos 2πθn) + a+ Dξn, (9)

wherevn is the internal state of the neuron model,θn is the
phase of quasiperiodic forcing with amplitudeb and irra-
tional frequencyω = (

√
5 − 1)/2, andc is a scale factor.

We consider the additive white Gaussian noiseDξn to ac-
count for experimental results, whereD is the amplitude
of noise. The functionf (·) is a monotonically decreasing
continuous function determined by the physical properties
of MOSFETs in the circuit. Refer to [8] for the details of
the experiment. Forb = 0.13 V, we obtained an SNA in
the simulation without noiseD = 0 V (Fig. 4(a)) and an
SNA in the experiment (Fig. 4(b)). Forb = 0.05 V, we
obtained a chaotic attractor in the simulation without noise
D = 0 V (Fig. 4(c)) and a chaotic attractor in the experi-
ment (Fig. 4(d)).

In the experiment, we observed a single time series of
vn of lengthN = 106 for each attractor. A diffusion pro-
cessxn is again defined as Eq. (1), wherex0 = 0. For each
xn, we calculate the time averaged varianceδ2(n). Because
of the finite length of the time series,N = 106, the val-
ues of the varianceδ2(n) are reliable only forn . O(102).
Figure 5 shows the behavior of the varianceδ2(n) for the
SNAs and chaotic attractors obtained in the simulations
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Figure 5: Time evolution of varianceδ2(n). (a) The vari-
anceδ2(n) for the SNA simulated in the absence of noise
(b = 0.13 V andD = 0 V) (blue solid line) and for the
SNA simulated under in the presence of noise (b = 0.13 V
andD = 0.8 × 10−3 V) (red dashed line). The difference
between the two lines is not trivial because the variance
purely due to noise isD2n < 2.6 × 10−4; (b) The variance
δ2(n) for the experimentally obtained SNA (b = 0.13 V).
(c) The varianceδ2(n) for the chaotic attractor simulated in
the absence of noise (b = 0.05 V andD = 0 V) (blue solid
line) and for the chaotic attractor simulated under in the
presence of noise (b = 0.05 V andD = 0.8× 10−3 V) (red
dashed line); (d) The varianceδ2(n) for the experimentally
obtained chaotic attractor (b = 0.05 V).

and the experiment. To characterize the evolution of the
variance, we use a local slope of the varianceLS(n) =
(δ2(n+ 28)− δ2(n− 27))/55, as shown in Fig. 6. For the
SNA obtained in the simulation without noiseD = 0 V,
the growth of the varianceδ2(n) seems roughly sublinear
(see red dashed line in Fig. 5(a)), but for the SNA obtained
in the experiment, the growth of the varianceδ2(n) seems
roughly linear in the time scale ofO(102) (see solid line
in Fig. 5(b)). Such a roughly linear growth ofδ2(n) is re-
produced in the simulation with noiseD = 0.8 × 10−3 V
(see blue solid line in Fig. 5(a)). However, for all the cases
of SNAs, we observe large fluctuations of the local slope
LS(n) as shown in Figs. 6(a) and 6(b). On the other hand,
for the chaotic attractors, the varianceδ2(n) grows linearly
as shown in Figs. 5(c) and 5(d), and the local slopeLS(n)
is almost constant (see Figs. 6(c) and 6(d)).

5. Summary

We investigated anomalous diffusion generated by
quasiperiodically forced maps with SNAs both numerically
and experimentally. Due to SNAs, subdiffusion was ob-
served in numerical simulations but in the experiment using
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Figure 6: Local slope of varianceLS(n) = (δ2(n+ 28)−
δ2(n− 27))/55. The panels from (a) to (d) in this figure
correspond to those in Fig. 5, respectively. All the panels
have the same axis ranges for comparison.

an electronic circuit subdiffusion was not clearly observed
due to the effect of noise. Nevertheless, we observed large
fluctuations of local slope in the time evolution of the vari-
ance for the case of SNA.
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