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Abstract—The dispersion of trajectories in chaotic sys{0 < @ < 1) [5]. In the present study, the such anomalous
tems with spatial translational symmetry is referred to adiffusion properties are shown for SNAs in a quasiperiod-
deterministic difusion. In a previous study, one of the au-ically forced map and an SNA observed in an experiment
thors showed that quasiperiodically forced systems withsing an electronic circuit.
strange nonchaotic attractors (SNAs) produce anomalous
diffpsion characterized by nonlinear Fime eyolutions of th% Subdiffusion due to antipersistence
variance. In the present study, we investigate anomalous
diffusion generated by quasiperiodically forced maps with | et us consider a ¢fusion process of “particles” on the
SNAs both numerically and experimentally. Due to SNAsyeal line. The position of a partiche, at timen = 0,1, 2, ...
subditfusion was observed in numerical simulations but ifis written as

the experiment using an electronic circuit suion was n-1

not clearly observed due to th&ect of noise. Neverthe- Xn = Xo + ZVk, 1)
less, we observed large fluctuations of local slope in the k=0

time evolution of the variance for the case of SNA. wherev, is a step size. Assumig,} to be awide sense

stationary processwhich satisfies(v,) = constant and

((Vn = (Va))(Vnir = (Vnir))) = C(r). Here(:) denotes an

ensemble average, and the covariane? is(independent
f_of n. The most basic quantities for the density distribution
Xo) and thevariance

1. Introduction

The one-dimensional random walk is a well known di h displ
fusion process. The variance (or mean square displac%r-et emean displacemerik, -
ment) (x2) of the random walkers grows linearly in time. , » _ vy 2\ _ Y NNy
Similarly, in a discrete time chaotic system, a partial surr<1(T () = (Ga=X0= 00 =X0)) = (G =X0)) ~ %n Xo(>25

Cen . . A ' )
%n = Zi_T_lhv' 3‘: charo;ucnva][l?rtl) ley'nSh?nV\l;SI a (?US'V?I pdro To characterize the temporal behavior of the variance,
CESS. € dispersion ot In€ ensemblexplis called a o se thdocal scaling exponent(n) such that

chaotic dffusion In typical chaotic systems, where the au-

tocorrelation fuctiorvyvh, ) decays exponentially fast, the ( 02(2n)> = ol o-z(n)). 3)

variance(x?) grows linearly in time. A type of diusion

with a linear growth of variance is called normafidsion.  Theaverage scaling exponeirt the time interval [2, 2]
A strange nonchaotic attractor (SNA) is a geometricallys defined by

strange attractor for which typical orbits have nonposi-

tive Lyapunov exponents [1]. SNAs typically appear in _ 1 M .
guasiperiodically forced dynamical systems and possess in- mM = o a(2°). (4)
termediate properties between quasiperiodicity and chaos k=m

[2]. Mitsui and Aihara recently show that SNAs appear inl’hen we have(o2(oM T (M=) /2 (om
. . . . , &oc(2M)) = 2¢mm (o=(2M). If the
several models of glacial cycles [3]. The aim Ofth'sStucjy'?/ariance(az(n)) gro(vvs)roughly as a powér |;\@mM is

to elucidate statistical properties of SNAs (especially, dif- pproximately-constant for large timefidirenceM — m
fusion properties) from both theoretical and experimentﬁ amely '

points of view.

It is reported that the partial sum, = >,V of a
variablev; of an SNA does not show normalflision If Eq. (5) holds forM = log, n andm = 0, the variance is
but anomalous diusion, where the variance grows loga-written as
rithmically (x2) ~ logn [4, 5] or sublinearly(x2) ~ n® (?(N)) ~ % (N — o). (6)

Umm = @. (5)
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(b)

The difusion is callednormal djfusionif @ = 1, and it
is calledanomalous gfusionif @ # 1. Especially,sub- ‘
diffusion corresponds to O< @ < 1, andsuperdjfusion 08 1 il
corresponds to ¥ @ < 2. f

The behavior of the variande-%(n)) is related to theor-
relation cogficient O(n) between successive increments in
n units of time 0.2

(mod 1)

X

o & A N O N B O

0 1000 2000 3000 4000
0 n

((%2n = Xn = (Xan = Xn))(Xn = Xo = (X0 = X0)))) °
[((Xen = X = (Xn = Xn))2X(%0 = X0 = (X - XO>)2>7]%
Under the assumption of stationarity, the correlatiorfitoe Figure 1: (@) SNAfoa = 1.7. (b) Separation of trajectories

cientC(n) can be written a€(n) = (-2(2n))/(2(c2(n)))- 1. X, with slightly different initial phaseg, = 0 and 10%.
Using Eq. (3), the local scaling exponer(n) is given as

C(n) =

a(n) =1+ log,[1 + C(n)]. (8)

for a > a.. Figure 1(a) shows the SNA fa = 1.7. The
phase sensitivity of SNA causes thdfdsion of x, with
different initial phaseg, (see Fig. 1(b)).

From Egs. (4) and (8), the values @fn) can be classified
as follows: The negative correlatiorl/2 < C(n) < O for
n=2¢k=m,..M - 1), calledantipersistencemeans
subditusion with 0 < @mm < 1, the positive correlation  We calculate the variancgr?(n)) given by Eq. (2) for
0<C(n) <1forn=2¢k=m.. M-1), calledper- an ensemble of 5000 trajectories initially distributed uni-
sistencemeans superffusion with 1< amm < 2, and the  formly over the region-0.5 < x < 0.5, 0< 6 < 1. For each
absence of correlatio®(n) = 0forn = 2¢(k=m, ..., M-1)  trajectory, the first 5000 iterations were discarded consider-
means normal diusion withamm = 1. ing them transients, and the 5001st state was sepi@q).

If {w} is ergodic, we havév;) = ¥y and(VtVisn) = ViVizn,  Since M is symmetric with respect to the transformation
where the right-hand-sides are the long time averages wigk, 6) — (-x,6 + 1/2 (mod 1)), we havéx, — Xo) = 0 and
respect td. Then, the ensemble averaged varia@e&n))  (o-2(n)) = (X, — Xo)2).
can be replaced by the time averaged variamég) =

v 2 ) . ) In a parameter region corresponding to SNAS%1<
(Xen — %)% — (X%in — %) along a typical trajectory, that is,

a < ac), the variancea?(n)) grows roughly as a power
law, as shown in Fig. 2(a), although there exist deviations
from strict power laws, which are rather conspicuous when
ais far from the transition poird = a.. Figure 2(b) shows
3. Numerical study the exponentr as a function ofa, which is estimated in
the interval [2°, 23°] (~ [10°, 10°]). This result shows that
Let T* = R/Z, the unit circle. The quasiperiodically M roughly exhibits subdiusion with 0< @ < 1 near the
forced sine map : T* xR — T* x Ris given by [7,4]  transition point to chaos. In the parameter region corre-
sponding to chaotic attractora ¢ a;), we observe normal
On1 = 0n + @ (mod 1) diffusion witha = 1 [see Figs. 2(a) and 2(b)]. We suppose
X1 = Xn + 2 sin(2tx,) + £ sin(276y), that the crossover from sulstiision to normal dtusion oc-
2n curs ata = a; because the exponemiata = a. approaches
wherea and e are parameters and is irrational. If we 1asmand M —m)increase.
considerx, on T* by taking modulo 1M reduces to the g res 3(a) and 3(b) show the correlation fioéent
quasiperiodically forced sine circle mapon T2. C(n) and the local scaling exponentn) for a = 1.7 (SNA)
‘When M has an attractor, the attractor can be classhqy, — 2 0 (chaos), respectively. It is shown that the subd-
sified using the conditional Lyapunov exponemt = g sion with 0< o(n) < 1 is caused by the antipersistence
limn_.-(1/n) In109xn/9%| and the phase sensitivity €xpo-_1 5 - c(n) < 0 for largen. On the other hand, the nor-
nentv [6], which measures the sensitivity of the attractor - gifusion withe(n) = 1 is caused by the decay of the
with respect to changes in the phake The attractor is a ¢, rejationc(n) = 0 for largen. Therefore, the crossover
two-frequency quasiperiodic attractorlit< 0 andy = 0, @ 4 sypdifusion to normal dusion results from the loss

three-frequency quasiperiodic attractorti 0, an SNAIf ¢ 5 ntinersistence owing to the transition from strange non-
A< 0andv > 0, or a chaotic attractor if > 0[7, 4]. chaotic to chaotic dynamics.

In what follows, we set = 2.5 andw = (V5 - 1)/2,
the golden mean. In a previous study, we showed that It should be mentioned that thefidision process is er-
has a quasiperiodic attractor far< 0.850 23, an SNA for godic. As shown in the inset of Fig. 2(a), the values of
0.85023< a < a (a. ~ 1.8287), and a chaotic attractor (c-?(n)) ando2(n) are identical.

(3(n)) = 2(n).
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(a) SNA (model) (b) SNA (experiment)
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e Figure 4: Attractor of map (9). (a) SNA simulated for=
0.13 V. (b) SNA experimentally obtained fér = 0.13 V.
(c) Chaotic attractor simulated for= 0.05 V. (d) Chaotic
attractor experimentally obtained for= 0.05 V.

4. Experimental Study

In our previous study [8], we generated SNAs and

) _ ) _ ) ) chaotic attractors in a switched-capacitor integrated circuit
Figure 2: (a) Evolution of the variande(n)) for differ- 9] | the present study, we analyzefdsion properties of
ent values ofa below a}(nd above, ~ 1.8287. Data are he SNAs and chaotic attractors obtained in [8]. The circuit
plotted at timesn = 2° (k = 1,2,..,29). Inset shows 55 designed to implement the chaotic neuron model [10]
the values okc?(n)) ando2(n), which are almost identi- ynder quasiperiodic forcing as follows:
cal. (b) Scaling exponent as a function ofa. The ex-
ponentx is obtained from the variance in the time interval i1 = 6h+w (mod 1)

[229, 239 (~ [10°, 107)). Vner = Kvp+cf(vy + bcosZi6,) + a+ D&, (9)

wherev, is the internal state of the neuron modaljs the

phase of quasiperiodic forcing with amplitudeand irra-

tional frequencyw = (V5 - 1)/2, andc is a scale factor.
05 @ 1 ®) We consider the additive white Gaussian ndixg to ac-

0zs| oo 2 — TR —— count for experimental results, whebeis the amplitude
0 E}Bﬁ@ I I oo e 0,0 0%9 0| Of noise. The functiorf(-) is @ monotonically decreasing
e asl|| || Ve g Jle Ogéé """" e continuous function determined by the physical properties
sl |l f 2 st e of MOSFETSs in the circuit. Refer to [8] for the details of
sl 640 ny the experiment. Fob = 0.13 V, we obtained an SNA in
. ' #20—- |  the simulation without nois® = 0 V (Fig. 4(a)) and an

WP 0 0w 00 P 0 0 SNA in the experiment (Fig. 4(b)). Fdr = 0.05 V, we
' ' obtained a chaotic attractor in the simulation without noise

Figure 3: (a) Correlation cdicientC(n) between succes- D = 0V (Fig. 4(c)) and a chaotic attractor in the experi-

sive increments im units of time fora = 1.7 (blue open Ment (Fig. 4(d)).

circle) anda = 2.0 (red open square). The value ®fn) In the experiment, we observed a single time series of

is calculated by using Eq. (7). (b) Local scaling expo¥n Of lengthN = 10° for each attractor. A diusion pro-

nente(n) for a = 1.7 (blue open circle) and = 2.0 (red  CeSSX, is again defined as Eq. (1), whexg= 0. For each

open square). The value ef(n) is calculated by using X», we calculate the time averaged variagé@). Because

Eq. (3). In both panels, data are plotted at times 2¢  of the finite length of the time serie§y = 1(P, the val-

(k=0,1,..,29). ues of the variancé?(n) are reliable only fon < O(107).
Figure 5 shows the behavior of the varian@é) for the
SNAs and chaotic attractors obtained in the simulations
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Figure 5: Time evolution of variancg(n). (a) The vari- Figure 6: Local slope of variandeS(n) = (6%(n + 28) —
ances?(n) for the SNA simulated in the absence of noises?(n — 27))/55. The panels from (a) to (d) in this figure
(b = 013 V andD = 0 V) (blue solid line) and for the correspond to those in Fig. 5, respectively. All the panels
SNA simulated under in the presence of noise-(0.13 V  have the same axis ranges for comparison.

andD = 0.8 x 1072 V) (red dashed line). The filerence

between the two lines is not trivial because the variance

purely due to noise i®°n < 2.6 x 10 (b) The variance an electronic circuit subfiision was not clearly observed
6%(n) for the experimentally obtained SNA (= 0.13 V). due to the ffect of noise. Nevertheless, we observed large
(c) The variancé?(n) for the chaotic attractor simulated in fluctuations of local slope in the time evolution of the vari-
the absence of noisé £ 0.05 V andD = 0 V) (blue solid ance for the case of SNA.

line) and for the chaotic attractor simulated under in the

presence of noisér(= 0.05 V andD = 0.8 x 107 V) (red Acknowledgments

dashed line); (d) The variané@(n) for the experimentally

obtained chaotic attractob & 0.05 V). This research is partially supported by Aihara Project,
the FIRST program from JSPS, initiated by CSTP.
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