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Abstract— Visual trackers based on the framework of 
kernelized correlation filter (KCF) need to learn information on 
the object from each frame, thus the state change of the object 
affects the tracking performances. In this paper, we propose a 
novel KCF tracker using luminance histogram and adaptive 
model,  to deal with the change of the object’s state. This method 
firstly takes skipped scale pool method which utilizes variable 
window size at every two frames. Secondly, the location of the 
object is estimated using the combination of the filter response 
and the similarity of the luminance histogram at multiple points 
in the filter response map. Thirdly, the learning rate to obtain the 
tracking model is adjusted, using the filter response and the 
similarity of the luminance histogram, considering the state of the 
object. Experimentally, the proposed tracker (CFHA) achieves 
outstanding performance for the challenging benchmark 
sequence (OTB100).   

I. INTRODUCTION 

Visual tracking, which automatically detects moving objects 
in image sequences, is one of the hot topics in computer vision. 
Theoretical research on visual tracking has made great progress 
and been applied to many applications, but still, it faces 
enormous difficulties such as deformations, fast motions, 
occlusions, background clutter, and scale variations and so on 
[4, 5, 6, 9,11].  

It is a tough problem for visual tracking to accurately track a 
moving object and simultaneously achieve real-time 
performance. Recently, the emergence of a group of correlation 
filters (CF) in tracking algorithms has enabled accurate and 
high-speed tracking [ 1, 2, 3, 8, 12, 13, 18].  

In 2010, D. S. Bolme proposed a new type of tracking 
algorithm with CF, named as MOSSE[14]. MOSSE introduces 
correlation filtering to visual tracking for the first time and it is 
famous for high-speed tracking. Compared to MOSSE which 
utilizes sparse samples as input, Henriques et al. proposed a 
tracking-by-detection method (CSK) [1] which showed higher 
speed in visual tracking. In CSK, a novel cyclic sampling 
method was proposed, and a cyclic matrix is constructed using 
cyclic samples. Using the cyclic structure, the training of the 
classifier becomes quite fast in frequency-domain. At the same 
time, the classifier detects the object at the maximum point of 
the response map of CF. In [3], M. Danelljan proposed 
discriminative scale-space tracker (DSST) which achieves 
accurate scale estimation in tracking. Moreover, Yang Li 
proposed a scale pool technique to deal with scale variation [8]. 
Although scale pool technique can achieve scale adaptive 
tracking and improve tracking accuracy, it needs more 

calculation time.  
To improve the robustness of trackers, robust features of the 

moving objects should be utilized in visual tracking. Henriques 
et al. proposed kernelized correlation filter tracker (KCF) 
which uses the histogram of gradient (HOG) to achieve state-
of-the-art performance in tracking [2]. M. Danelljan extended 
the CSK tracker with color attributes [16]. Utilization of color 
attributes was shown to be effective to get excellent results for 
object recognition and object detection [19, 20]. Yang Li 
employed various powerful features to improve the 
performance of trackers, such as the raw grayscale, HOG and 
color attributes (CN) [8]. At present, conventional handcraft 
features (HOG and CN) [21, 22] are major features for visual 
tracking.     

In this paper, a new method for visual tracking based on KCF 
is proposed to deal with the state change of the object, such as 
deformation, occlusion, and so on. This method is named as a 
correlation filter using the luminance histogram and adaptive 
model, CFHA for short. To realize robust detection for the 
moving objects with the variant state, we proposed before a 
tracking method based on KCF using adaptive model 
(KCFAMSR)[17]. The proposed CFHA newly utilizes the 
information on both the correlation response and the luminance 
histogram to estimate the location of the object in KCFAMSR. 
Moreover, the information at multiple points in the response 
map are taken into consideration 

An adaptive method, such as a scale pool method and 
adaptive model update, which are adopted in KCFAMSR, are 
also included in CFHA, but they are improved as follow. First, 
skipped scale pool method, which apply scale pool method at 
every two frames is proposed in order to save computation time. 
Second, the model update is more precisely adjusted at each 
frame considering the state of the object. 

 Experimental results demonstrate that the proposed tracker 
shows the state-of-the-art performance for the standard 
benchmark (OTB-100) [7, 15].      

II. KERNELIZED CORRELATION FILTER TRACKER (KCF) 

We briefly review the principle of KCF [1][2] which is the 
original form of our proposed CF-based trackers. 

 Linear Regression 
 KCF estimates the location of the object by a correlation 

filter w. Suppose that yi is the target response of the filter for 
the i-th input image patch which is expressed as a vector xi, 
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KCF obtains the filter w which approximates yi as wxi by linear 
ridge regression as follows. 

 
																									𝑚𝑖𝑛𝒘

∑ (𝑓(𝒙𝒊) − 𝑦.)/ + 𝜆‖𝒘‖3
.                    (1) 

 
Here f(xi)= wxi and l is a regularization parameter. 
The solution of w which satisfies (1) is obtained as 
 
            𝒘 = (𝑋6𝑋 + 𝜆𝐼)89𝑋6𝒚                             (2) 
 
where X is a matrix composed of rows xi’s, y a vector, the 
elements of which are yi’s, and I an identity matrix. 𝑋6 denotes 
the Hermitian transpose of X. 

 Circulant Matrix 
KCF assumes that a cyclic shift version of xi corresponds to 

a shifted image patch. Thus, image patch samples which are 
densely collected around the estimated location can be 
expressed as cyclic shifts of the base image sample x. Thus, the 
matrix X can be expressed as a circulant matrix of the base 
sample as shown in Fig. 1.  

Fig. 2 shows examples of the dense image patches around 
the base sample (0,0), obtained by shifting the base sample 
vertically and horizontally by one pixel. Since the shifting 
range becomes wide, the size of the matrix X becomes large, 
requiring a lot of computation time to obtain the solution w. 
    KCF introduces the discrete Fourier transform (DFT) to 
reduce the computation time, using the characteristics of 
circulant matrices that all circulant matrices are made diagonal 
by DFT. The circulant matrix X can be expressed as follows, 
 
																																		𝑋 = 𝐹𝑑𝑖𝑎𝑔(𝑥@)𝐹6                                (3) 
 

where F is the DFT matrix, 𝒙A is the DFT of the base sample x, 
and 𝑑𝑖𝑎𝑔(𝑥@) denotes a diagonal matrix, the diagonal element 
of which is 𝒙A. 

Thus, the solution w in Eq. (2) is obtained by inverse DFT 
of 𝒘A  which is obtained by element-wise product ⨀ as follows. 
 

																																			𝑤A = D@⨀E@
D@∗⨀D@GH

                                         (4) 

 
 
 
 

 
Fig.1 Circulant matrix X obtained by cyclic shift of a base sample. 

 

 
 

Fig.2 Example of the cyclic shifts of a base sample to approximate the 
dense samples around the base sample 

 
 
Here, 𝒚A  denotes the DFT of y, and all the calculation is 

performed element-wisely. Since inverse matrix is not required 
to calculate Eq. (2), KCF can obtain the solution w with a small 
amount of calculation. 

 Non-linear Regression 
The fundamental idea of KCF can be extended to no-linear 

regression by applying kernel trick to project the sample 𝒙. into 
high-dimensional feature space 𝜑(𝒙.) . More powerful 
classifier can be realized by this non-linear regression. In non-
linear regression, the regression function f for the input sample 
z becomes, 
 
                                               (5) 

 
where  is a kernel function, such as Gaussian as 

𝜿(𝒛, 𝒙.) = exp	(− 9
PQ
(‖𝒛‖/ + ‖𝒙.‖/) − 2𝐹89(𝒛@⨀𝒙A.))   (6) 

The variable to be optimized is a vector 𝜶  =(a1, a2, …, an) 
instead of w. The solution of 𝜶 is obtained by ridge regression 
as follows. 
 
                                𝜶 = (𝐾 + 𝜆𝐼)89𝒚                                 (7) 
 

Here 𝐾 is the kernel matrix with elements  𝐾.U = 𝜅(𝒙., 𝒙U) , 
which also becomes a circulant matrix, if the Gaussian kernel 
as Eq. (6) is adopted. Thus, Eq. (7) can be solved by making 
the matrix diagonal and the following solution is obtained in 
frequency domain. 
																																						𝜶A = 𝒚A

𝒌XYYGH
                                 (8) 

 
Here, kxx denotes the first row of the kernel matrix K, that 
is	𝜅(𝒙, 𝒙) , and again a hat ˆ denotes the DFT. Also, l is added 
to all the elements and the division is performed  
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Fig.3 Update the model of the object using online learning method. This 

model obtains the information on the object in each frame. 
 
 
element-wisely. Computation time can be also reduced owing 
to the diagonalization. Finally, the regression for the input z is 
obtained from the inverse DFT of the following 𝑓Z(𝒛). 
 

   																																				𝑓Z(𝑋) = (𝒌X[D)∗ ⊙𝜶A                    (9)  
 

 Model update     
KCF tracks an object while updating the model of the object 

and the filter. Suppose that the visual information on the object 
is denoted as  and the filter as at  at frame t, they are updated 
as follows, where M is the new input information on the object 
and a the newly obtained filter at current frame, and  𝜂 is the 
learning rate . 

 
         𝑍_ = (1 − 𝜂)𝑍_89 + 𝜂𝑀                                (10)  
 
																				𝜶_ = (1 − 𝜂)𝜶_89 + 𝜂𝜶                                (11) 

 
As shown in Fig. 3, the model of frame 3 includes model 
information from frame 1 and frame 2. Such online learning 
method can reduce the effect of background and improve the 
robustness of the model. 

III. CORRELATION FILTER USING LUMINANCE HISTOGRAM 
AND ADAPTIVE MODEL   

In CFHA which is proposed here, three types of 
improvement are introduced to KCF; one is skipped scale pool, 
one is estimating the object location using both the filter 
response and the luminance histogram at multiple points in the 
response map, and the other is adopting adaptive model update 
considering the state of the object. 

A. Skipped Scale pool 
Scale variation of the object is a tough problem in visual 

tracking. Scale pool is a method to adapt the tracking system to 
scale variation, but it is time-consuming to prepare various 
sizes of scales. 

In this paper, we propose a new method of scale pool to solve 
scale variation, while saving the computation time. Since the 
scale of the object does not change drastically in two adjacent 
frames, a skipped scale pool is proposed here which applies 
scale pool 𝑆 = {𝑆9, 𝑆/, 𝑆d} in every two frames. Here,  

 

 
 

Fig.4 Tracker gets three response maps using three scales from scale pool, 
and according to the maximum response, the best scale is selected. 

 
 

Sk is the value of the scale to be multiplied to the search patch 
size, and we set S as {0.95, 1.0, 1.05}. Object tracker obtains 
three response map using this scale pool. The scale which gives 
the maximum filter response is judged as the proper scale. The 
process of scale pool method is as shown in fig. 4. The scale 
gap in S is set larger than that of SAMF, because SAMF applies 
scale pool at every frame. The scale change is larger at two 
frames ahead in our method. In applying scale pool, when the 
size of the object 𝑆f = (𝐻𝑒𝑖𝑔ℎ𝑡,𝑊𝑖𝑑𝑡ℎ) is too small, the size 
of the search patch {𝑆f(𝑆.)|𝑆. ∈ 𝑆}  does not change at all, 
because the difference of the patch sizes 0.05 × 𝑆f  become 
less than 1.0, which becomes zero in quantizing the patch size 
to an integer. In this case, it makes no sense to use the scale 
pool. In order to avoid this situation, we change the width or 
the height of the search patch size by at least 1. If height is less 
than width, patch sizes as {Height-1, Width-Ratio}, {Height, 
Width}, and {Height+1, Width+Ratio} are applied. Here, 
Height and Width are the height and the width of image patch, 
and Ratio is as follows. 

 
																			𝑅𝑎𝑡𝑖𝑜 = tuv	(6w.xy_,z.{_y)

t|}	(6w.xy_,z.{_y)
                               (12) 

If width is less than height, width is changed by 1, and height 
is by Ratio. 

B. Combination with Luminance Histogram  
Correlation filter trackers belong to template matching 

tracking methods. Since KCF uses HOG feature to describe 
object, it is difficult for HOG to maintain robustness to non-
rigid object deformation. When the object has deformation, the 
response map will change dramatically, causing tracking 
failure. In order to obtain the correct location, we proposed to 
use luminance histogram of the image as well as the response 
map of HOG. The luminance histogram describes gray 
distribution of the object, which can visually show the amount 
of each gray level in the image. Thus, the same object can be 
easily recognized by the luminance histogram, although the 
object gets deformed. We adopt cosine similarity [10] to obtain 
the luminance similarity between the histogram vectors as 
follows: 

 
																			cos𝜃 =

∑ (f�×��)
�
���

�∑ (f�)Q�
��� ×�∑ (��)Q�

���

                          (13) 

 

tz
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Where 𝑇. is the 𝑖 − 𝑡ℎ element in the luminance histogram 
vector of the initial object, and 𝑁.  is the i-th element in the 
luminance histogram vector of the current object.  

The response map directly reflects the relationship between 
the model and the samples, and the maximum point of the map 
corresponds to the location of the object. However the 
maximum point is sometimes ambiguous when the object 
changes its state, such as deformation and so on. In order to 
increase the reliability, we propose to select the highest four 
values {𝑅.|𝑖 ∈ {1,2,3,4}} in the response map, and judge the 
location of the object from the products of Ri and the luminance 
histogram similarity 𝐻.  at the four positions as 𝑌 = �(𝑅. ×
𝐻.)|𝑖 ∈ {1,2,3,4}�. The location of the object is obtained as the 
position of i which takes the maximum value in 𝑌. 

C. Adaptive Model Update  
The model of the object and the filter is a significant factor 

for correlation filter trackers. The quality of the model directly 
affects the results of tracking. In this paper, we update the 
model adaptively by analyzing the state of the object. Fig. 5 
and Fig. 6 show the maximum filter response and the similarity 
of luminance histogram at each frame in the image sequence 
[jogging] and [car2] in OTB100 [15] respectively. In Fig. 5, 
deformation of the object occurs in the first few frames, and 
accordingly the maximum value of the filter response drops 
drastically. However, in this case, the similarity of the 
luminance histogram is kept steady, because the luminance 
histogram does not influenced by the deformation. At this time, 
the state of the object is to be recognized as ‘deformation’ and 
the learning rate of the model should be increased. In the 
frames from number 60 to number 80, both the maximum filter 
response and the histogram similarity drop largely. In this case, 
the object is occluded by an obstacle, and the model should not 
be updated by the new input. When the object is rigid as cars, 
the maximum response and the similarity of luminance 
histogram are kept steady in early stage as shown in Fig. 6. 
However, when the illumination around the object changes in 
frames 60-80 and 120-140, both of these values become 
smaller. Especially, since luminance histogram is not robust to 
illumination, the value of the similarity drops largely, while the 
drop of the maximum filter response is not so large. In this case, 
the learning rate of the model should be reduced in order to 
avoid the effects of illumination.  

 
 

 
Fig.5 The maximum response (left) and the similarity of luminance 
histogram (right) at each frame in the image sequence [jogging]. 

 The horizontal axis represents the frame number. 
 

 
Fig.6 The maximum response (left) and the similarity of luminance 

histogram (right) of each frame in the image sequence [cars]. 
 The horizontal axis represents the frame number. 

 
The judgment coefficient σ is introduced here to adjust the 

learning rate, using the information on both the maximum filter 
response and the similarity of the luminance histogram, as 
follows. 

 

							𝜎 =

⎩
⎨

⎧
0					|𝑅3 − 𝑅| > 0.1,𝐻 < 0.7	
1					|𝑅3 − 𝑅| ≤ 0.1,𝐻 ≥ 0.7	
2				|𝑅3 − 𝑅| > 0.1,𝐻 ≥ 0.7
0.5	|𝑅3 − 𝑅| ≤ 0.1,𝐻 < 0.7

                         (14) 

 
Here, |Rn-R| is the change of the maximum filter response and 
H the similarity of luminance histogram. When  𝜎 = 0, the 
search region is enlarged to relocate the object. The judgment 
coefficient 𝜎 is applied to the model update as follows.  
 
       𝑍_ = (1 − 𝜎𝜂)𝑍_89 + 𝜎𝜂𝑀                              (15)  
 
															𝛼_ = (1 − 𝜎𝜂)𝛼_89 + 𝜎𝜂𝛼                               (16) 
 
The overall algorithm is summarized into Algorithm 1. 
 

Algorithm 1 CFHA tracking algorithm 
Input: Initial target position 𝑃��{ , initial target scale 
𝑏𝑒𝑠𝑡_𝑠𝑐𝑎𝑙𝑒, initial target luminance histogram 𝑀.  
Output: Target position of each frame {𝑃_}/f , target scale 
𝑏𝑒𝑠𝑡_𝑠𝑐𝑎𝑙𝑒. 

1: 	Repeat	
2: 	For	each	scale	in	S	do.	
3: 								Crop	a	searching	region	at	the	last	location		𝑃_89.	
4: 								Extract	HOG	feature	map.	
5: 								Calculate	the	dual	space	coefficient	𝛼	with	Eq.7.	
6: 								Calculate	the	response	𝑓Z(𝑧)	via	Eq.8.	
7: 	End	
8: 	Get	beat	scale	according	to	max	(𝑓Z(𝑧)).	
9: 	Combine	similarity	𝐻. and four maximum values of 

response 𝑓Z(𝑧), 𝑌 = �(𝑅. × 𝐻.)|𝑖 ∈ {1,2,3,4}�.	
10: 	Detect	the	target	position	𝑃3w¢.	
11: 	Analyze	the	state	of	object	𝜎 with	Eq.13.	
12: 	Adjust	the	learning	rate	𝜂	with	Eq.14	and	Eq.15.	
13: 	Update	the	tracking	model.										
14: 	Until	end	of	video	sequence.																																

 

IV. EXPERIMENTS 
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Experiment was performed to the OTB-100 benchmark 
database in order to evaluate the performance of the proposed 
CFHA tracker. Firstly, we compare our proposed tracker with 
eight other trackers (SAMF, DSST, KCF, KCFAMSR, CSK, 
IVT, CT, DFT). SAMF [8], DSST [3], CSK [1], KCFAMSR 
[17] and KCF [2] are correlation filter trackers. IVT [23], CT 
[25] and DFT [24] are tested in the benchmark database [7]. 
All sequences in OTB-100 are annotated with 11 attributes 
which cover challenging factors, including fast motion (FM), 
background clutters (BC), motion blur (MB), deformation 
(DEF), illumination variation (IV), in plane rotation (IPR), low 
resolution (LR), occlusion (OCC), out of plane rotation (OPR), 
out of view (OV), scale variation (SV). We use one-pass 
evaluation (OPE) to fully evaluate our tracker. The precision 
scores indicate the percentage of the frames in which the 
estimated locations are within 20 pixels from the ground-truth 
positions. The success scores are the area under curve (AUC) 
of each success plot.   

 Details and parameters 
 All the experiments are conducted on an Intel Xeon Silver 

4112 CPU (2.60GHZ) PC with 16GB memory. Our proposed 
CFHA tracker runs at about 54 frames per second. The learning 
rate 𝜂 is set to 0.015. The gap in scale pool 𝑆 is set to 0.05. The 
cell size of HOG is 4x4 and the orientation bin number of HOG 
is 9.  

 Evaluation of CFHA 

The precision scores and the success scores of the proposed 
tracker CFHA and the other eight trackers are shown in figure 
7 for all the 100 image sequences in OTB-100. The results 
show that CFHA obtains the best performance both in 
robustness and accuracy. CFHA is based on KCF, but CFHA 
significantly improves KCF by an average improvement of 
20% in the average AUC scores. At the same time, CFHA gains 
11% improvement upon KCF in precision. DSST and SAMF 
focus on solving scale variation as CFHA, but CFHA gets 
better performance than DSST and SAMF in the computation 
time. Especially, frame rate is three times higher in CFHA than 
SAMF. Comparing to non-correlation filter trackers IVT, CT 
and DFT, the gain of the precision score of CFHA are 81%, 
121% and 87% respectively, and as to the success score, 81%, 
113% and 74% respectively.  Table 1 and Table 2 shows the 
detail performance of the nine trackers on 11 challenging 
attributes in OTB-100. The results demonstrate that CFHA 
obtains robust performance on most attributes, especially on 
fast motion, motion blur, deformation, low resolution and scale 
variation. Although SAMF uses more robust features, such as 
HOG and CN, than CFHA, CFHA gets better performance. 

V. CONCLUSIONS 

In this paper, a new type of coefficient-filter tracking method 
CFHA is proposed using luminance histogram and an adaptive 
model, considering the state change of the object. 

 
 

TABLE I OTB-100 the precision scores of 11 changing factors 
 FM BC MB DEF IV IPR LR OCC OPR OV SV 

CT 0.227 0.387 0.197 0.337 0.353 0.364 0.384 0.324 0.362 0.298 0.333 

IVT 0.217 0.446 0.204 0.321 0.439 0.433 0.543 0.400 0.429 0.297 0.407 

DFT 0.305 0.455 0.272 0.412 0.411 0.434 0.421 0.415 0.440 0.353 0.352 

CSK 0.397 0.574 0.355 0.451 0.482 0.514 0.445 0.428 0.489 0.276 0.448 

KCF 0.621 0.713 0.601 0.617 0.719 0.701 0.671 0.630 0.677 0.501 0.633 

DSST 0.554 0.657 0.555 0.526 0.688 0.684 0.738 0.554 0.622 0.483 0.644 

SAMF 0.665 0.689 0.623 0.679 0.710 0.721 0.766 0.716 0.728 0.660 0.694 

KCFAMSR 0.659 0.691 0.589 0.679 0.712 0.705 0.733 0.652 0.691 0.501 0.669 

CFHA 0.753 0.724 0.701 0.714 0.748 0.767 0.785 0.714 0.762 0.648 0.725 

 
TABLE II OTB-100 success scores of 11 changing factors 

 FM BC MB DEF IV IPR LR OCC OPR OV SV 

CT 0.225 0.297 0.187 0.242 0.269 0.270 0.148 0.264 0.271 0.268 0.246 

IVT 0.196 0.325 0.209 0.278 0.333 0.301 0.334 0.288 0.300 0.234 0.286 

DFT 0.272 0.369 0.263 0.329 0.334 0.327 0.224 0.332 0.335 0.291 0.262 

CSK 0.329 0.410 0.308 0.337 0.368 0.379 0.234 0.331 0.354 0.250 0.318 

KCF 0.459 0.498 0.459 0.436 0.479 0.469 0.290 0.443 0.453 0.394 0.394 

DSST 0.462 0.491 0.460 0.409 0.529 0.497 0.412 0.426 0.457 0.389 0.473 

SAMF 0.512 0.524 0.496 0.501 0.526 0.518 0.425 0.531 0.525 0.495 0.484 
KCFAMSR 0.501 0.504 0.450 0.486 0.514 0.503 0.470 0.475 0.489 0.393 0.478 

CFHA 0.567 0.542 0.533 0.520 0.561 0.557 0.521 0.532 0.553 0.493 0.536 
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Fig 7. OTB-100 benchmark comparison. The precision plot (upper) and 
the success plot (lower). 

 
 

CFHA is realized by adding three types of new methodologies 
to KCF to consider the state change; one is a skipped scale pool 
method to deal with scale variation with less calculation time, 
one is introducing the similarity of luminance histogram to 
estimate the location of the object, and the other is adjusting 
the learning rate on the basis of the state of the object which is 
recognized by the combination of the change of the maximum 
response and the similarity of luminance histogram. Especially, 
the second factor is new, compared with KCFAMSR which 
was proposed by authors before. From the experimental results 
for OTB-100, the proposed method is shown to obtain more 
robust and effective performance than conventional method. 
Improvement of our method using color attribute is for further 
research. 
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