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Abstract-We address the radar high resolution range profile 
(HRRP) denoising problem for improving the recognition rate of 
HRRP at low signal-to-noise ratio (SNR). Gaussian white noise in 
HRRP return is suppressed by an approach based on sparse 
representation. A Fourier redundant dictionary is established for 
sparsely representing HRRP returns. An adaptive signal 
recovering algorithm, Orthogonal Matching Pursuit-Modified 
Cross Validation (OMP-MCV), is proposed for obtaining 
denoised HRRP without requiring any knowledge about the noise 
statistics. As a modification to OMP-CV, OMP-MCV modifies the 
cross validation iteration condition, which can prevent the 
iteration procedure from terminating at local minimum impacted 
by noise. Simulation results show that OMP-MCV achieves better 
performance than OMP-CV and some other traditional denoising 
method, like discrete wavelet transform, for HRRP returns 
denoising.  

I. INTRODUCTION 

High resolution range profile (HRRP) automatic target 
recognition (ATR) has received much attention in recent years 
[1-3]. In practice, the HRRP signatures are usually distorted 
due to the presence of noises, such as system noise, 
environmental noise and complicated battle interference etc. 
And this results in the recognition performance degradation. 
Several methods have been proposed to settle this issue [4-6]. 
The noise-robust bispectrum signatures have been extracted 
for target recognition [4]. Noise-robust factor analysis models 
based on multitask learning (noise-robust MTL-FA) has been 
developed to improve the recognition performance at low 
signal-to-noise ratio (SNR) [5]. HRRP denoising is another 
feasible choice, e.g., combine bispectrum-filtering has been 
used to suppress the noise of HRRP [6]. Nevertheless, there 
are several limitations of these methods. First, the noise-robust 
features are limited and maybe not optimal for classification. 
Secondly, the noise-robust MTL-FA classifier suffers from a 
large computational burden, impeding its practical application. 
Lastly, the combine bispectrum-filtering requires a certain 
number observations to reduce noise, increasing the time cost 
of HRRP recognition. It is therefore desired to develop new 
methods to handle the issue.  
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Recently, sparse representation (SR) has attracted much 
attention in signal processing [7, 8]. In sparse and redundant 
dictionary, the signal energy is concentrated on minority atoms, 
whereas the noise energy is evenly dispersed over the atoms. 
This makes the signal part achieve a strong anti-noise ability. 
Thus in this paper, for extracting HRRP denoised features at 
low SNR, we seek to suppress the Gaussian white noise in 
HRRP return by sparse representation with only one 
observation. A sparse and redundant dictionary is established 
for sparsely representing the HRRP returns. The OMP-MCV 
method, a modification to Orthogonal Matching Pursuit-Cross 
Validation (OMP-CV) [9], is proposed to adaptively denoise 
the HRRP return without requiring any knowledge about the 
noise statistics. Simulation results show that the OMP-MCV 
algorithm outperforms over the original OMP-CV and discrete 
wavelet transform [10] for HRRP returns denoising. 

II. RADAR HIGH RESOLUTION RANGE PROFILING  

Usually, radar HRRP is achieved through wideband signal, 
such as Liner Frequency Modulation (LFM) signal and 
Stepped-frequency (SF) signal etc. In this paper, LFM signal is 
taken as an example to discuss HRRP denoising. The principle 
described here can be extended to other waveforms.  

The transmitted wideband LFM signal can be represented as 
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denotes complex signal envelope, pT  denotes pulse width, 
cf  is carrier frequency, and   is frequency modulation 

slope. 
The return from a target located at range tR  is given by 
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where A  is the amplitude of the return. With some 



 
straightforward manipulations, the de-chirping output 
can be written as 
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where t refR R R   , and refT  denotes the pulse width of 
reference signal, usually lager than pT . The later three phase 
terms in (4) are constants, with no contribution to HRRP. If the 
sum of the later three phase terms is denoted as  , it follows 
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where 2df R c  . Equation (5) shows that after 
de-chirping, the return of every scatterer is a complex 
sinusoidal signal with a frequency proportional to the relative 
range of the scatterer.  

III. HRRP ADAPTIVE DENOISING BY SPARSE REPRESENTATION 

In this section, we start the discussion of HRRP denoising 
via sparse and redundant representations by first discussing 
how redundant dictionary is established. Then, the OMP-MCV 
method is proposed to adaptively denoise the noisy returns 
without requiring any knowledge about noise statistics.  

A. HRRP Return Sparse Representation 
In noisy circumstance, assuming that a target contains K  

scatterers situating at different ranges and a single pulse 
contains M  sampling points. From (5), the time domain 
sampling sequence of the de-chirping output pulse can be 
represented as 
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where kA , kf , k  are the amplitude, relative frequency 
normalized by sampling rate and constant phase of the return 
from the k th scatterer respectively. ( )s m  and ( )n m  denote 
signal sequence and Gaussian white noise sampling sequence 
respectively. Let [ (0), (1), , ( 1)]Ty y y M y , 

[ (0), (1), , ( 1)]Ts s s M s , [ (0), (1), , ( 1)]Tn n n M n , 
then (6) can be rewritten as 
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Equation (7) indicates that the de-chirping output sequence is 
superposed of multiple complex sinusoidal signals and noise 
component. Usually, the number of the main scatterers from a 
target is much less than that of the range cells in HRRP. Thus 
s  is sparse in frequency domain and can be sparsely 
represented by complex Fourier redundant dictionary, which is 
constructed as 
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[0,1, , 1]TM m  and N M . In (9), 
 0,1 , ,( 1)N N N N f  is the normalized frequency. Then 

(7) can be represented as  
y Ax + n  (10) 

where x  is a sparse vector, composed of the decomposition 
coefficients of signal s  in A . Sparse representation theory 
shows that if x  satisfies    0 1 2 sparkx A , where 

 spark A  denotes the minimum number of columns of A  
that are linearly dependent and 0  denotes the 0l  norm of 
a vector (i.e., the number of its non-zero components), x  can 
be stably recovered by the following 0l  optimization problem 
[11] 
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where   is the representation error boundary dictated by 
noise level 2

n . The solution of (11) is NP hard. 
Approximated solution can be acquired by greedy algorithms, 
e.g., OMP [12]. In this paper, OMP is utilized to solve (11) for 
its simplicity and efficiency. When obtaining x̂  from (11), 
the denoised HRRP return can be acquired by ˆ ˆs Ax .  

B. Selection of Representation Error Boundary  
For denoising by sparse representation,   is an important 

parameter. If   is not selected properly, the denoised HRRP 
either misses some scatterers information (underfitting) or still 
contains some noise part (overfitting).   is determined by 
noise statistics , which are unknown and need to be estimated 
in most cases. Cross-validation (CV) is an effective method to 
recover sparse signal from noisy measurements in compressed 
sensing (CS) without estimating noise statistics. In this work, 
we modify OMP-CV to solve (11) for HRRP denoising. The 
sampling points of HRRP return are randomly separated into 
two sets: the estimation set and the CV set. The estimation set 
is used to solve (11) with an selection of  , and the CV set is 
employed to verify the solution. The HRRP denoising 
procedure consists of the following steps: 

1) Initialize:  
Randomly separate the sampling points of HRRP return 

into two sets, 1 1M
E

y  and 2 1M
CV

y , where 
1 2M M M  . And separate the redundant dictionary A  

into two sub-dictionary EA  and CVA  corresponding to 
Ey  and CVy  respectively.  
Set 1 2M M , 2E y , 2E y , x = 0 , 1i  . 

2) Estimate:  
Estimate the sparse solution x̂  of (11) by OMP using 
EA  and Ey . 

3) Cross validate:  



 
If 2

ˆCV CV  y A x , set 2
ˆCV CV  y A x ,

2
ˆCV CV  y A x  and ˆx = x , else continue to judge: if 

2
ˆCV CV    y A x , terminate the algorithm, else set 

    , where   and   can be selected as 1.3  
and 0.97   respectively. 

4) Iterate: 
Increase i  by 1 and iterate from Step 2). 

In the step 3), we increase the judgment of 
2

ˆCV CV    y A x  and continuously reduce   by 
    . This is because that, as   gradually decreasing, the 
CV error is not guaranteed to continuously decrease to the 
global minimum, but it may present a little fluctuation because 
of the influence of noise. Step 3) can effectively prevent the 
algorithm from terminating at local minimum. We refer to this 
modification as OMP-MCV modification to the OMP-CV 
algorithm. Finally, the denoised HRRP return is obtained by 
 s Ax . 

IV. EXPERIMENTAL RESULTS 

In this section, the simulated experiments are conducted to 
investigate the denoising performance of OMP-MCV for 
HRRP.  

A. Experiment Setup 
The HRRP returns of a target with 7 scatterers located at 

different range, 12000m, 12001m, 12002.1m, 12002.3m, 
12005.3m, 12006.9m, 12008.7m respectively, are simulated. 
And the amplitudes of returns from the scatterers are set as 0.2, 
0.3, 0.3, 1, 0.3, 0.5, and 0.8 separately. The radar system 
parameters are set as follows: carrier frequency 0 5.52f GHz , 
bandwidth 400B MHz , pulse width 25pT us , reference 
pulse width 25.6refT us , sampling rate for de-chirped 
output 10sf M . Under these parameters, every sampling 
sequence of a single pulse is a 256-length vector. The 
redundant dictionary is established with 256M  , 

1024N   for sparsely representing the HRRP returns. After 
de-chirping processing, the noise-free HRRP obtained by FFT 
is illustrated in Fig. 1.  

B. CV Error Variation in the Iteration Procedure 
To investigate the variation of CV error in the iteration 

procedure, the representation error   is gradually decreased 
with a fixed step, and the CV error is tested in this process. 
And the SNR is set to 5dB. The sampling sequence is 
randomly separated two sets: 176 sampling points for 
estimating the original noise-free signal and the rest 80 
sampling points for the CV test. The variation of CV error 

2
ˆCV CVy A x  and signal reconstruction error 2

ˆs Ax  in the 
iteration procedure are shown in Fig. 2.  

The results of Fig. 2 indicate that as   gradually 
decreasing, the CV error is stepped down to the global 
minimum. Besides, the CV error presents a little influence 
nearby the minimum. In other words, CV error may encounter 

local minimum in the procedure of converging to the global 
minimum. Compared with OMP-CV, the step 3) in 
OMP-MCV can effectively prevent the algorithm from 
terminating at local minimum. Fig. 2 also shows that the signal 
reconstruction error converging to the rock bottom as the CV 
error reaches the global minimum. 

C. Selection of Number of CV 
Usually, the signal pulse width and sampling rate are fixed 

in radar system, thus the length of the sampling sequence is 
fastened, i.e., 1 2M M  is a constant. There is a tradeoff 
between the size of the estimation set 1M  and the size of the 
CV set 2M . Increasing 1M  will improve estimation 
accuracy of the original noise-free signal, whereas, increasing 

2M  will enhance CV estimation accuracy, also important for 
the OMP-MCV algorithm. Thus the influence of the CV size is 
investigated in this subsection. The SNR is set to 5dB. The 
root-mean-square error (RMSE) of the denoised signal is 
surveyed, which is defined as 
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where 0s  is the original noise-free HRRP return, îs  is the 
denoised HRRP return, and I  is the times of Monte Carlo 
experiments which is selected as 100. The RMSE of the 
denoised returns varying with the number of cross validation is 
shown in Fig. 3. 

The result of Fig. 3 demonstrates that as 2M  increase, the 
denoising performance improves at first, and then worsens. 
Thus in practice, a tradeoff should be made for selecting 1M  
and 2M . In this experiment, the best balancing point is 
selected by 1 196M   and 2 60M  . 

D. Denoising Performance 
In the subsection, the denoising performance of OMP-MCV 

is verified by compared with other methods. In this experiment, 
the sampling sequence is randomly separated into two sets 
with 1 196M  , 2 60M  . The RMSE of the denoised 
returns is investigated as SNR varying from 0dB to 30dB. For 
reference, we also assume that the exactly noise level 2

n  is 
known and setting 2

 n  for solving (11) by OMP, 
referring to it as OMP-δ for short. Meanwhile, the original 
OMP-CV [9] and the discrete wavelet transform denoising 
(DWTDN) [10] are utilized for comparing. In DWTDN, the 
‘db8’ wavelet basis is chosen due to its better denoising 
performance than other ‘db’ wavelet basis in our experiments. 
The returns are decomposed into 10 layers, and then the noise 
is rejected by Heursure threshold. RMSE of the denoised 
HRRP returns by various methods are surveyed with 100 times 
Monte Carlo experiments. The results are exhibited in Fig. 4. 

The results of Fig. 4 demonstrate that OMP-MCV achieves 
much better denoising performance than DWTDN for HRRP. 
This is because the radar return is composed of complex 
sinusoidal components after de-chirping processing, and the 
return energy is more concentrated in Fourier redundant than 



 
wavelet basis, leading to a stronger anti-noise performance. 
The denoising performance of OMP-MCV is also better than 
that of original OMP-CV, close to that of OMP-δ, because of 
its capability of preventing the iteration procedure from 
terminating at local minimum.  

V. CONCLUSION 

For enhancing the performance of HRRP recognition at 
noise circumstance, this paper has presented an adaptive 
denoising method, OMP-MCV, for suppressing Gaussian 
white noise in HRRP return via sparse representation. This 
method is a modification to OMP-CV and can effectively 
prevent iterating estimation from terminating at local 
minimum. The HRRP returns are denoised by OMP-MCV 
without needing any knowledge about the noise statistics. 
Simulation results show that OMP-MCV achieves better 
denoising performance than original OMP-CV and DWTDN. 

 

Fig. 1 HRRP of simulated target 

 
Fig. 2 Evolution of the error with   gradually decreasing 

 
Fig. 3 RMSE of denoised HRRP returns varying with tradeoff  

of the number for CV set and estimation set.  

 

Fig. 4 RMSE of the denoised HRRP by various methods varying with SNR 
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