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Abstract—Recently, much attention have been paid to
the methods for circuit analysis using wavelet transform. In
particular, we have proposed the method which can choose
the resolution of the wavelet adaptively. This method can
fully bring out the orthogonal and the multiresolution prop-
erties of the wavelet, and the efficiency of the calculation
can be improved. In this paper, we propose the method to
analyze the steady-state periodic solutions of the nonlinear
circuits driven by the periodic external input by applying
the appropriate boundary conditions, and prove the effec-
tiveness of the proposed method.

1. Introduction

The wavelet transform has been often used in signal
processing because of its orthogonality and multiresolu-
tion property [1, 2]. Recently, much attention has been
paid to the method for circuit analysis using wavelet trans-
form [7]–[9]. In particular, Barmada et al. have proposed
the Fourier-like approach for the circuit analysis using the
wavelet transform [8]. In this method, the integral and dif-
ferential operator matrices are introduced to the analysis,
and the differential and integral equations are transformed
into the algebraic equations like as using Fourier or Laplace
transforms. Moreover, the method can treat time varying
and nonlinear circuits. Therefore, this method is useful for
various circuit analyses.

However, in that method, the use of Daubechies wavelet
makes the handling of the operator matrices complicated,
especially, in the edges of the interval. Thus, we have pro-
posed the circuit analysis method using Haar wavelet trans-
form [9]. The Haar wavelet is easy to handle itself, and the
operator matrices using the Haar wavelets are easily de-
rived by introducing the block pulse functions [5, 6]. More-
over, the proposed method can treat the nonlinear time
varying circuits.

In addition, Haar wavelets have the merit to be able to
analyze the trajectory near the singular points where the
trajectory moves rapidly with high resolution because of
the orthogonality and localization property of the wavelet
functions. As circuit analysis methods using this merit,
some methods were proposed to pick out the ranges auto-
matically where the trajectory moves rapidly near singular
points. Thus we have proposed the method for transient

circuit analysis using wavelet transform with adaptive res-
olutions [10]. In this method, the result of the multireso-
lution analysis is used to choose the range to be analyzed
more precisely. It makes the adaptive choice of the wavelet
resolution possible, and as a result, the efficient calculation
can be achieved.

On the other hand, the wavelet method to analyze the
steady-state waveforms for power electronics circuits have
proposed by Tam et. al [11]. If we calculate such steady-
state waveforms using time-marching methods as in the
conventional way, the calculation cost is wasted due to the
calculation of the long-term transient response with suffi-
ciently small step size to approximate the discontinuous
dynamics typically seen in power electronic circuits. To
overcome such disadvantage of the time-marching method,
in [11], the Chebyshev polynomials are used as the basis
functions for wavelet approach, and the periodic solutions
of periodically driven power electronics circuits have been
calculated. However it is considered that the calculation
should be complicated and the Gibbs-phenomenon-like er-
rors have been seen when the switching is occurred because
of the use of the Chebyshev polynomials. In contrast, the
Haar wavelet transform will make the calculation simpler,
and also the discontinuity of the Haar function will be suit-
able for the analyses of such discontinuous behavior of the
power electronics circuits. Therefore, in this paper, we pro-
pose the method to analyze the steady-state periodic solu-
tions of the nonlinear circuits driven by the periodic exter-
nal input by applying the appropriate boundary conditions.
We will show an algorithm for the approximation of the
steady-state periodic solution and the better performance
for the accuracy using a simple example.

2. Haar Wavelet Matrix and Integral and Differential
Operator Matrices

Haar functions are defined on interval [0,1) as follows,

h0 =
1
√

m
, (1)

hi =
1
√
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2
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−2
j
2 ,
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2

2 j ≤ t < k
2 j ,

0, otherwise in [0, 1),

(2)
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i = 0, 1, · · · ,m − 1,m = 2α,

where α is positive integer, and j and k are nonnegative
integers which satisfy i = 2 j + k, i.e., k = 0, 1, · · · , 2 j − 1
for j = 0, 1, 2, · · · .
~y is m × 1-dimensional vector whose elements are the

discretized expression of y(t) and ~c is m × 1-dimensional
coefficient vector. H is m × m-dimensional Haar wavelet
matrix defined as

H = [~hT
0
~hT

1 · · · ~hT
m−1] (3)

where ~hi is 1 × m-dimensional Haar wavelet basis vec-
tor whose elements are the discretized expression of hi(t).
Note that H is an orthonormal matrix. Using these vec-
tors and matrix, Haar wavelet transform and inverse Haar
wavelet transform are described as follows, respectively,

~c = H~y, (4)

~y = HT~c (= H−1~c ). (5)

The basic idea of the operator matrix has been firstly in-
troduced by using Walsh function [5]. However, in logical
way, the matrices introduced by block pulse function are
more fundamental [4, 5]. The block pulse function is the
set of m rectangular pulses which have 1/m width and are
shifted 1/m each other.

The integral operator matrix of the block pulse function
matrix B is defined as the following equation [5, 6].∫ i

0
B(τ)dτ ≡ QB · B(t), (6)

QB =
1
m

12 I(m×m) +

∞∑
i=1

Pi
(m×m)

 , (7)

where B(t) is m × m-dimensional matrix whose elements
are the discretized expression of the block pulse functions
bi(t), i = 0, 1, · · · ,m − 1 and

Pi
(m×m) =

[
0 I(m−i)×(m−i)

0(i×i) 0

]
for i < m,

Pi
(m×m) = 0(m×m)

for i ≥ m.
As the Haar wavelet matrix H is the set of the orthogonal

functions, the integral matrix of H is given as follows:

QH = HQT
BH−1 = HQT

BHT . (8)

Similarly, the differential matrix of H can be written as

Q−1
H = H(QT

B)−1H−1 = H(QT
B)−1HT . (9)

3. Haar Wavelet Expression of Branch Characteristics

As the Haar wavelet is defined on interval [0,1), the
generic interval [tmin, tmax) can be rescaled by a new vari-
able τ on [0,1), where [tmax − tmin)τ + tmin. In this pa-
per, tmin = 0 without loss of generality, then capacitance
c [F] and inductance l [H] are scaled to C = c/tmax and
L = l/tmax, respectively.

Next, we show the Haar wavelet expression of branch
characteristics of nonlinear time varying circuit elements
for the expression in wavelet domain. See details in [9].

Capacitor:

v(t) = v(0−) +
1
C

∫ t

0
i(τ)dτ, v0 := v(0−),

V = V0 +C−1
w QH I, or I = CwQ−1

H [V − V0], (10)

Cw = Hdiag[C(i0, t0),C(i1, t1), · · · ,C(im−1, tm−1)]HT

Inductor:

i(t) = i(0−) +
1
L

∫ t

0
v(τ)dτ, i0 := i(0−),

I = I0 + L−1
w QHV, or V = Q−1

H Lw[I − I0]. (11)

Lw = Hdiag[L(i0, t0), L(i1, t1), · · · , L(im−1, tm−1)]HT

Resistor:
v(t) = Ri(t),

V = RwI, Rw = diag[R]. (12)

Rw = Hdiag[R(i0, t0),R(i1, t1), · · · ,R(im−1, tm−1)]HT

4. Method to Find Steady-State Periodic Solutions

Consider the following ordinary differential equation,

ẋ = f (x, t) , A(x, t)x + u(t) (13)

where x(t) ∈ Rn×1 is an unknown state variable vector,
A(x, t) ∈ Rn×n is a nonlinear time-varying parameter matrix,
and u(t) ∈ Rn×1 is an external force vector. The system is
driven by the periodic external force or parameter with pe-
riod T . Assume that we can find the periodic solution xp(t)
with period T , i.e. xp(t) = xp(t+T ) for all t. In order to find
the steady-state periodic solutions, we should find the solu-
tion for the interval [0,T ) under the appropriate boundary
conditions. For the wavelet expression of the differential
equations, we define the discretized expression of x(t) and
u(t) as ~xi =∈ Rm×1 and ~ui =∈ Rm×1 for i = 1, 2, · · · ,m, re-
spectively. Moreover, ~xi0 = [xi(0) xi(0) · · · xi(0)]T ∈
Rm×1 and ~x0 = [x1(0) x2(0) · · · xn(0)]T ∈ Rn×1 for
i = 1, 2, · · · ,m which is the initial value vector.

The wavelet transformed expression of Eq. (13) can be
derived as

Q−1
m [X − X0] = AH X + U (14)

where X = [(H~x1)T (H~x2)T · · · (H~xn)T ]T ∈ Rmn×1

is an unknown wavelet coefficients vector, X0 =
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Figure 1: Definition of the analyzed interval and the time
step.

[(H~x10)T (H~x20)T · · · (H~xn0)T ]T ∈ Rmn×1 and U =

[(H~u1)T (H~u2)T · · · (H~un)T ]T ∈ Rmn×1. Note that ~xi0
is also unknown for this case. Moreover,

Q−1
m = diag[Q−1

H ] ∈ Rmn×mn (15)

and AH ∈ Rmn×mn is the wavelet region expression of A de-
rived from Sect. 4. At this moment, as both X and X0 are
unknown, we cannot solve this algebraic equations. On the
other hand, for the periodic solutions, xp(t) = xp(t+ T ) can
be the boundary condition for Eq. (13). Though x(0) =
x(T ) is one of the choices of the conditions, these un-
known variables cannot be derived from the above equa-
tion. Therefore, the other choice of the boundary condition
is needed.

To determine the boundary condition, we set the ana-
lyzed interval as shown in Fig. 1. The period T is divided
by m−1 and one more time step included in the next period
is added to the analyzed interval. Therefore, the time step
∆t = T

m−1 and tmax = T + ∆t. Because of the feature of
the matrix QB, time ti is calculated as ti = ∆t

2 + ( j − 1)∆t
( j = 1, 2, · · · ,m). Due to the periodicity, the relationship
xi(t1) = xi(tm) for all i = 1, 2, · · · , n is derived. From
Eq. (5), this relationship is rewritten as follows.

[h11 h21 · · · hm1]Xi = [h1m h2m · · · hmm]Xi,
(16)

where hi j is an element of Haar wavelet matrix, and then,

[h11 − h1m h21 − h2m · · · hm1 − hmm]Xi = 0. (17)

Setting [h11−h1m h21−h2m · · · hm1−hmm] , hb ∈ R1×m

and diag(hb) , Hb ∈ Rn×mn, the relationship

HbX = 0 (18)

is derived.
To derive the unknown vector ~x0, we consider the rela-

tionship between X and X0. From Eq. (14, we see the ma-
trix Q−1

H Xi0 from Q−1
m X0. From the relationship Xi0 = H~xi0,

Q−1
H Xi0 = Q−1

H H~xi0 (19)
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Figure 2: Simple boost converter.

If we set Q−1
H H , [qi j] ∈ Rm×m,

Q−1
H H~xi0 =


q11 + q12 + · · · + q1m

q21 + q22 + · · · + q2m
...

qm1 + qm2 + · · · + qmm

 xi(0)

, q0xi(0) (20)

Then we define Q0 = diag(q0) ∈ Rmn×n Eq. (14) is rewritten
as

(Q−1
m − AH)X − Q0~x0 = U (21)

From Eqs. (21) and (18), we can derive n(m + 1)-
dimensional algebraic equations as follows,[

Q−1
m − AH −Q0

Hb 0

] [
X
~x0

]
=

[
U
0

]
. (22)

In this equation, the number of the unknown variables co-
incides with the dimension of the equation. Therefore, we
can derive all the unknown variables to solve it. If the sys-
tem is nonlinear, Eq. (22) becomes a nonlinear algebraic
equation and should be solved by the recursive methods
like Newton-Raphson method. Finally, we derive the ap-
proximated solution of Eq. (13) from Eq. (5).

5. Example

In this section, we show the simple example to confirm
the effectiveness of the proposed method. The simple boost
converter circuit shown in Fig. 2 is analyzed in this exam-
ple. The circuit parameter is set as the same as shown in
[11]. The circuit equations written as follows,[

i̇L

v̇C

]
=

[
−Rs(1−s(t))+Rs s(t)

L − s(t)
L

s(t)
C − 1

RC

] [
iL

vC

]
+

[ E−s(t)V f

L
0

]
(23)

where

s(t) =
{

0, for 0 ≤ t ≤ TD

1, for TD ≤ t ≤ T (24)

An example of the calculated results for the proposed
method are shown in Fig. 3. From these figures, we can
see good approximation is achieved compared with the ex-
act solutions. To evaluate the accuracy of the proposed
method, we calculate mean relative error (MRE) given by

MRE =
1

m + 1

m∑
i=0

∣∣∣∣∣∣ x j(ti) − x̂ j(ti)
x̂ j(ti)

∣∣∣∣∣∣ (25)
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Table 1: Comparison of MREs for approximation in boost converter.

α MRE for iL ([11]) MRE for vC ([11]) MRE for iL (proposed) MRE for vC (proposed)
4 0.025789 0.025714 0.078896 0.032298
5 0.025745 0.025704 0.011233 0.003098
6 0.025736 0.025703 0.019376 0.010234
7 0.025734 0.025702 0.003816 0.002181
8 0.031353 0.028476 0.004065 0.001844
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Figure 3: Numerical results of iL for the proposed method
for α = 4, 5, 6, 7, 8.

where x̂ means the exact solutions. Table 1 shows the MRE
for iL and vC compare with the errors shown in [11]. From
this results, the proposed method can achieve the better ap-
proximation than the method shown in [11]. Hence, we can
construct the simple and accurate method to calculate the
steady-state periodic solution by using Haar wavelet trans-
form. It is considered that the proposed method can play
important roles to analyze the power electronic circuits and
hybrid dynamical systems.

6. Conclusions

In this paper, we have proposed the method to ana-
lyze the steady-state periodic solutions of the nonlinear
circuits driven by the periodic external input by applying
the boundary conditions that xp(t) = xp(t + T ). The Haar
wavelets make the algorithm simpler and the better accu-
racy has been achieved compared with the methods previ-
ously shown. Therefore, it is considered that the proposed
method can play important roles to analyze the power elec-
tronic circuits and hybrid dynamical systems. The appli-
cation of the proposed method to the autonomous systems
seems to be the future works.
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