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Abstract—We construct a network from the transport
data of particles driven by a flow field and analyze this
network using the analytical tools developed in the net-
work science. The aim of this study is to clarify the prop-
erty which has not been clarified in conventional analytical
methods of fluid dynamics. The targets are specification of
the important spatial regions, relaxation process to steady
state, impact of perturbation, etc. In this paper, we out-
line the construction method of the network and apply it
to a model of the Lagrangian turbulence. We show that
the betweenness centrality computed from the network of
the transition probability between subregions of the sys-
tem takes a high value in the boundary region of the roll.
This result suggests that those regions are important re-
gions in the sense that they are the bottlenecks of the net-
work. This method has a lot of potential applicability to
the local climate analysis, control of transport, etc. Our
method serves a new picture to the transport phenomena in
turbulent flows.

1. Introduction

After the seminal papers of small world [1] and scale
free [2] networks, the network science has been developed
in the last decade [3]. Dynamical processes on networks
[6] including synchronization [4, 5] are intensively studied
in the nonlinear science.

The author has studied synchronization of mobile agents
of the phase oscillator which interact with nearby agents in
Refs. [7, 8]. This system can be regarded as a temporal net-
work whose topology changes in time. We found that there
exist different mechanisms of information propagation in
such time dependent networks.

In our previous studies, we regarded mobile agents as
nodes of the network, and the connectivity changes in time
due to the motion of the agents. In this study, we con-
sider a flow field and transport of particles through this
flow. we regard each spatial point as a network node, and
transition probability of particles from a node to another
node as a link between them. This method provides a
coarsening way of looking at flow system. With this ap-
proach, it is expected that we can extract the relevant prop-
erties of the transport phenomena with much less compu-
tational cost compared to the direct simulation of the fluid.

Such an approach is called the metapopulation model and
has been developed in ecology [9]. Our study applies the
metapopulation-like concept to transport phenomena of the
fluid, and make the analysis based on the network science.

Transport phenomena by fluid is important not only from
scientific but also from engineering viewpoint. There are
many potential applicability such as efficient mixing using
turbulent diffusion, analysis of transport which is important
for environmental problem. Planning the optimal proce-
dure to prevent those particles is an example of the inverse
problems and requires a lot of computational cost.

Characteristic of this method is that we construct a net-
work in a spatially continuous system, e.g. fluid field, and
analyze this network employing the methodologies of the
complex network science. Some examples of the network
approach to fluid dynamics can be found in the geophysics
(e.g., [10, 11]). They employed correlation-based quanti-
ties such as correlation function and mutual information in
order to construct networks: The nodes are connected if
those quantities are higher than the threshold. On the other
hand, the proposed method uses the transition probability
of particles from one place to another, thus the physical
meaning of the network is clear. It is therefore expected
that our method can predict the diffusion process of the
transport phenomena. In our study, although node-link cor-
respondence is not clear, we can phenomenologically con-
struct the network from the data. Moreover, we use quanti-
ties which are employed in the network science.

This paper is organized as follows. In Sec. 2, we de-
scribe the method to construct the transport network from
the data. We see how this idea works with the data obtained
from the model of particle transport in Sec. 3. Finally, the
results are summarized and discussed in the last section.

2. Method

In this section, we describe the method to generate the
network from the flow data. The network is constructed as
follows. First, we divide the whole space into N subregions
S i (i = 1, 2, · · · ,N). We regard each S i as a node of the
network.

Here, we construct the network as follows. Let the num-
ber of particles which starts from the node j at t = 0 and are
transported to the node k at t = τ be nk j(τ). It is judged that
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there exists a link from node j to k if nk j(τ) , 0. Then the
transition probability matrix is approximately written as

S k j(τ) = nk j(τ)/
∑

k nk j(τ). (1)

Devision of the space is arbitrary, but
∑

k nk j must contain
enough number for all j.

The physical meaning of the network constructed by
Eq. (1) is clear. We assume that the correlation time of
the flow is less than τ and the transport after τ is approxi-
mated by the Markov process. If we consider the discrete
time evolution equation

pk(t + τ) =
∑

j S k j(τ)p j(t), (2)

its steady state approximates the steady state distribution of
the particles.

Note that this methodology is data-driven. If we know
the time evolution equation of the system, we can simulate
the evolution of the particle by taking the initial points in
S i. After time t, we examine the point of those particles.
However, we can construct the network if we have enough
number of flow data, and the network can be constructed
even if we do not have enough information of the time evo-
lution equation which governs the dynamics. For exam-
ple, the connectivity of populations of coral reefs has been
studied statistically by analyzing the gene type of corals
[12]. We can construct the network with such an indirect
transport data and analyze it, and apply the result to e.g.,
analysis of the population dynamics of coral. This analysis
can provide a realistic estimation of the recruitment terms
of the coral ecosystems modeling [13]. It would be possi-
ble to combine real data and mathematical modeling which
can generate more ensembles. Our research procedure is
schematically shown in Fig. 1.
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Figure 1: Schematic figure of the proposed analytical
framework of network approach of transport phenomena.

3. Example

In this section, we perform the network construction and
the analysis of a passive diffusion system governed by a
time dependent ordinary differential equation. When the
convection flow field oscillates in time, it is know that the
dynamics of particles show the so-called Lagrangian tur-
bulence due to jumps of the particles between different
streamlines. This is an example of the mixing caused by
the fluid. We consider the flow in the x-z plane generated
by the time dependent stream function Ψ(x, z, t) [14]. That
is

Ψ(x, z, t) = Ψ0(x + B sin(2πt), z), (3)

and

ẋ = −∂Ψ(x, z, t)
∂z

, (4)

ż =
∂Ψ(x, z, t)
∂x

. (5)

These equations govern the diffusion process of the par-
ticles. Note that the particles can cross the instantaneous
stream functions Ψ(x, z, t) due to its time dependent prop-
erty. The simulation has been performed with the fourth or-
der Runge-Kutta method with dt = 10−3. The system size
is Lx = 6 and Lz = 1. Chaotic diffusion of the particles ini-
tially distributed in a small region is plotted in Fig. 2. Parti-
cles distributed in the small rectangular region near (1, 0.2)
at t = 0 diffuse following the above equations. The small
rectangle is at first stretched along one roll at t = 2 and then
two (t = 4) rolls.
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Figure 2: Diffusion process of particles in the x-z plane gener-
ated by the Lagrangian turbulence model [14]. Particles initially
distributed in a small square at t = 0 diffuse to the whole sys-
tem with Eqs. (4) and (5). The convection roll-like distribution is
generated at t = 10.

We constructed the network using the method described
in the previous section. We divide the whole region into
subregions of small squares of 0.2 × 0.2 size. We take
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many initial points in each subregion and numerically ob-
tain the time evolution of the particles with Eqs. (4) and
(5). We counted the number of particles transported from
one node to another and computed the transition probabil-
ity. As is noted, the constructed network is an approxima-
tion of the flow by a Markov process, and the eigenvec-
tor corresponding to the largest eigenvalue of the transition
matrix is an approximated steady state of the transport of
particle caused by the stream function Ψ. The transition
matrices of the diffusive particles S k j(τ) obtained with the
numerical simulation at τ = 1 and τ = 2 are depicted
in Fig. 3. In the figure, the index k of S is defined as
k = Nzxk/∆x + (zk + 0.5)/∆z, where (xk, zk) are center of
kth subregion and Nz = Lz/∆z. The area of a subregion
is ∆x∆z, with ∆x = ∆z = 0.2 in the simulation. As seen
from the figure, non-zero elements of the transition matrix
are enhanced for larger τ. This represents the diffusion pro-
cess. The matrix consists of six squares near the diagonal
corresponding to six rolls in the x direction.

Once the network is constructed, we can apply many an-
alytical methods developed in the network science. In this
paper, we show an example with the weighted between-
ness centrality, a quantity which characterizes the bottle-
neck node of the network. The betweenness centrality is
computed numerically and is plotted in Fig. 4. It is a quan-
tity which represents the impact of the number of shortest
paths from a node (say, B) to another node (C) when re-
move a node A. When a node takes a high betweenness
centrality, it means that this node is a bottleneck of the net-
work, because the shortest paths decrease when we remove
those nodes. In our simulation, we can clearly see that the
boundary regions between two rolls take high betweenness
centrality. This result suggests that those regions where the
streamlines cross under oscillating streaming function are
bottlenecks of the flow field.
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Figure 3: Transition matrix S k j(τ) for τ = 1 (a) and τ = 2 (b).
i (horizontal axis) and j (vertical axis) denote the label of subre-
gions.

4. Summary and discussion

We proposed a method to analyze transport phenomena
in flows as diffusion processes on networks. With the data
of flow of particles, we construct the transition matrix. We
have shown by numerical simulation that the weighted be-
tweenness centrality of the network takes high value near

 0  1  2  3  4  5  6

x

-0.4

-0.2

 0

 0.2

 0.4

z

 100

 1000

 10000

Figure 4: Betweenness centrality distribution of the diffusion
network of Eqs. (4) and (5). Subregions where the value exceed
500 are plotted.

the roll of the original system. This result suggests the ap-
plicability of the network approach to uncover the proper-
ties of transport phenomena.

We still have many issues regarding to basic of the
method and application which must be studied in the fu-
ture. At first, we have to verify that the obtained transition
matrix is consistent. It should give the same steady state
with different way of taking subregions for large enough τ.
Moreover, S ’s have to satisfy the semi-group property, i.e.,
S k j(τ1+τ2) =

∑
m S km(τ1)S m j(τ2). It would be necessary to

study the range of τ where this approximation works well.
Spectral analysis will provide the information of the re-

laxation process to the steady state. The second largest
eigenvalue of the transition matrix is approximately the in-
verse of the relaxation time to the steady state distribution.
Another important application will be to study the shift of
the distribution of the particles under the change of the flow
field. If we can predict the response of the distribution, it is
useful because the result is obtained without the large scale
computer simulation. One possibility would be to use the
perturbation expansion developed in quantum mechanics.
The perturbation method describes the change of the eigen-
value in terms of the eigenspectrum of the unperturbed ma-
trix. Therefore, if we can specify the unperturbed transition
matrix and the perturbed one, the perturbation method can
be applied to our problem. Finally, it may be possible to
design a flow field which gives the desirable distribution of
particles by the above mentioned perturbative method as an
inverse problem. This could be an important application of
the proposed method.
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mechanics of complex networks. Rev. Mod. Phys.,
74:47–97, Jan 2002.

[4] Alex Arenas, Albert Dı́az-Guilera, Jurgen Kurths,
Yamir Moreno, and Changsong Zhou. Synchroniza-
tion in complex networks. Physics Reports, 469(3):93
– 153, 2008.

[5] N. Fujiwara and J. Kurths. Spectral universality of
phase synchronization in non-identical oscillator net-
works. Eur. Phys. J. B, 69(1):45–49, may 2009.

[6] A. Barrat, M. Barthlemy, and A. Vespignani. Dynam-
ical processes on complex networks. Cambridge Uni-
versity Press, 2008.

[7] Naoya Fujiwara, Jürgen Kurths, and Albert Dı́az-
Guilera. Synchronization in networks of mobile os-
cillators. Phys. Rev. E, 83(2):025101(R), Feb 2011.

[8] Naoya Fujiwara, Jurgen Kurths, and Albert Dı́az-
Guilera. Spectral analysis of synchronization in
mobile networks. AIP Conference Proceedings,
1389(1):1015–1018, 2011.

[9] I. Hanski. Metapopulation ecology. Oxford Univer-
sity Press Oxford, UK, 1999.

[10] K. Yamasaki, A. Gozolchiani, and S. Havlin. Climate
networks around the globe are significantly affected
by el niño. Phys. Rev. Lett., 100:228501, Jun 2008.

[11] J. F. Donges, Y. Zou, N. Marwan, and J. Kurths. The
backbone of the climate network. EPL (Europhysics
Letters), 87(4):48007, 2009.

[12] J. N. UNDERWOOD, L. D. SMITH, M. J. H.
VAN OPPEN, and J. P. GILMOUR. Multiple scales
of genetic connectivity in a brooding coral on iso-
lated reefs following catastrophic bleaching. Molecu-
lar Ecology, 16(4):771–784, 2007.

[13] Soyoka Muko and Yoh Iwasa. Long-term effect
of coral transplantation: Restoration goals and the
choice of species. Journal of Theoretical Biology,
280(1):127 – 138, 2011.

[14] Katsuya Ouchi, Nobuyuki Mori, Takehiko Horita, and
Hazime Mori. Advective diffusion of particles in
rayleigh-bénard convection. Progress of Theoretical
Physics, 85(4):687–691, 1991.

- 317 -




