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Abstract— The conductance-based simulation approach is
highlighted as a most valuable method for the examination
of neuronal functions by means of mathematical models in
close relation to the physiological and pathophysiological
mechanisms. This approach, mostly used for single
neuron simulations, can be extended to consider
subcellular mechanisms as well as higher level activities
at the level of neuronal networks, interactions between
different brain nuclei, and relations to behavioral
functions.  Strategies of physiologically justified
simplifications and adjustments to specific tasks with
regard to experimentally and clinically relevant measures
are illustrated, and novel technologies to overcome the
inherent limitations of time consuming calculations are
presented.

1. Introduction: The Multiple Levels of Brain
Functions and their Nonlinear Interdependencies

Modeling of brain functions requires considering
different functional levels and scales, from subcellular
processes of gene expression and second messenger
systems to ion channels, neurons, and synapses, further up
to neuronal networks and interaction between different
brain nuclei, and finally to the behavioral level with
cognitive and mental functions [1,2]. For example,
cognitive functions of learning and memory are
apparently related to cellular and subcellular processes of
ion channel modulation with successive alterations of ion
channels’ density and synaptic efficacy.  Likewise,
neurological and psychiatric disorders are typically
manifested at the behavioral level while drug treatment
interferes with synaptic transmission, ion channels, and
gene expression.

Bringing together these different levels is a major
challenge in neurobiology. The task is further aggravated
by the fact that the functional interdependencies at all
levels and between them are highly nonlinear. Moreover,
there is an enormous meshing of different functions at the
same level as well as across the levels, i.e. along a
horizontal as well as a vertical scale. Additionally,
biological systems are notoriously noisy and the reaction
of individual elements exhibits enormous diversity.

Conductance-based approaches can deal with such
complicated interdependencies by introducing
physiologically justified simplifications. This study

presents an example of such a modeling approach for
neuronal current activation. A second example will show
how the problem of time-consuming simulations can
further be reduced by the use of a digital FPGA hardware
core for the calculations.

2. Model Simplifications and the Relations between
Nonlinearities and Randomness

The conductance-based approach, going back to the
ingenious work of Hodgkin and Huxley [3], provides the
physiologically most realistic simulations of neuronal
functions, because each model variable and parameter has
a clearly defined physiological correlate. In the original
Hodgkin-Huxley = (HH)-equations the  determinant
parameters are the rate constants of the opening and
closing of ion channels which are functions of the
membrane voltage. Most HH-type models are still
designed in this form. We have simplified the original
approach arriving at a two- instead of four-dimensional
model for spike-generation [2,4]. Among others, we have
made the model parameters easier to adjust by replacing
the unhandy equations that calculate current activations
from the rate constants by sigmoid steady-state activation
curves:

a=1/1+exp(=(V =Vy)/s)) , ey
where a is the steady state activation variable and V' is the
actual voltage with V), as the half-activation potential and
s the slope of the sigmoid curve.

Notably, these simplifications do not weaken the
connections to physiological mechanisms, but instead
bring the equations closer to experimental reality. In the
vast majority of nowadays patch-clamp experiments,
whole cell currents are recorded and their activation
curves are typically fitted by sigmoid Boltzmann
functions. Rate constants can be derived from the
activation curves what, by the way, was also done by
Hodgkin and Huxley. Their aim, at that time, was to
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understand how the shape of an action potential can be
explained - with exceptional success. All their major
assumptions have fully been confirmed during recent
decades. However, actual research is more focused on
subthreshold mechanisms to understand how the firing
rates and spiking patterns are modulated, generally
adjusted by alterations of slope, half-activation, and
maximum value of the Boltzmann function.
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Fig. 1: Upper diagram: Exponential curves of rate constants of
ion channel closing and opening probabilities as a function of the
membrane voltage V, adjusted to a sigmoid current activation
curve. The dots show the values of opening probabilities
obtained from 40ms simulation runs as illustrated by examples
in the lower diagrams. The numbers indicate the membrane
voltage (/) and the relative time of open states (p_o).
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The relations between an ion channel dynamics and
neuronal current activation are illustrated in Fig. 1 by
means of a simple channel type that only switches
between two states, open and closed. As an example, we
have taken a sigmoid curve with half activation voltage V),
=-30 mV and slope of s=0.07. The exponential curves of
opening and closing probabilities p, and p, are given by

P, = aexp(b (V- V,)), 2

p. = aexp(—b V — V). 3)

For simplicity, the parameter values for opening and
closing probabilities are chosen to be the same. With

a = 0.11 (here per ms) and b = 0.035 (mV") (Fig.
Itop panel) transitions between open and closed states are
obtained as shown in Fig. 1 bottom. When the percentage
of open states is calculated the points are distributed along
the original sigmoid curve (Fig. 1 top).

Although a neuronal model that is composed of such
nonlinear functions is considered deterministic, one
should bear in mind that Boltzmann curves are probability
functions and that the background of the neurons’
nonlinearities is the randomness of ion channel opening
and closing. This leads to partly significant deviations of
the simulated values from the calculated curve (Fig. 1 top),
especially when the simulation runs (or experimental
recordings) are short. Likewise, with a limited number of
ion channels in a real neuron, the percentage of open
states will show fluctuations over time. To consider also
this aspect of randomness a time-varying stochastic term
is needed. Such a term is mostly implemented by a
mathematical realization of noise, typically by Gaussian
white noise, added to one or more of the model variables.
In this way, noisy simulations are obtained. Tese
“dynamic” aspects of randomness with a “noise” term can
lead to significant changes of the neuronal behavior in
cooperation with the “static” randomness, i.e. the system’s
nonlinearities [5] what can be seen not only in computer
simulations but also in experimental recordings [6]. In real
neurons, it is an artificial distinction because it is the same
source from which (deterministic) nonlinearities and noise
originate.

Noteworthy, the functionally essential nonlinearities
are often implemented by sigmoid curves also in more
simplified higher level models without any action
potentials, e.g. in Hopfield nets [7,8] where the neurons’
output reflects an integrated firing rate. In this case,
sigmoid functions, of course, immediately remind on the
output of a noisy neuron in response to an increasing input.
At even higher levels when, for example, the interaction
between different brain nuclei is simulated by mean field
models [9] the output of a complete nucleus is often
summarized in a single term of a compound firing rate. In
this case, another type of randomness may additionally be
comprised, namely the individual neurons diversity, best
known to all experimentalists from enormous differences
in individual neurons’ activity and responsiveness even in
exactly identical situations. Similar to the “static” form of
noise, the sigmoid curves may reflect a “global” diversity.
To consider “individual” diversity, according to “dynamic”
noise, requires to additionally consider the diversity of
individual elements which, as demonstrated by recent
studies [10], can again can have significant effects on the
system’s dynamics.

3. Multi-Level Simulations and Impulse Patterns

Without neglecting the above mentioned higher level
simulations and other modeling approaches, we have
made particular attempts to adjust our simplified,
conductance-based model neuron for use in multi-level

- 309 -



simulations. The connections to the next lower levels of
ion channels, as demonstrated above, can easily be made
considering the physiological background of the model’s
structure. Additionally, similar to the neuron model, we
have designed a simplified, but nevertheless
physiologically justified, version of a chemical synapse
that can account for a manifold of experimentally and
clinically relevant changes at the synaptic membranes as
well as of subcellular processes [11]. Towards higher
levels, e.g. to study the interaction between functionally
different brain structures, we have represented them by
single, conductance based neurons and synapses which
allowed us to relate alterations of brain functions to
activity dependent changes of the synaptic efficacy and
underlying alterations of subcellular processes [4].
Recently, we have extended these multi level approaches
considering a larger number of neurons also to account for
the above mentioned “individual” diversity [12].

Conductance-based models of individual neurons have
the major advantage compared to models with mean firing
rates and compound activity outputs that they also allow
considering the functionally important alterations of the
spike pattern. We are specifically interested in transitions
from single-spike activity (tonic firing) to grouped
discharges (bursts) which, for example, can regularly be
observed at the transitions from wake to sleep states or
during epileptic seizures, which are also, most
interestingly, accompanied by neuronal synchronization.
To examine these interrelations, we have been running
neuronal network simulations with four-dimensional
model neurons that, in addition to the spike generating
currents, include subthreshold currents for slow
membrane potential oscillations. These model neurons,
originally developed for the simulation of peripheral cold
receptor discharges [13], have proved to be most flexible
single neurons pattern generators that are perfectly suited
to examine the relations between neuronal impulse pattern
and synchronization [14,15].

Admittedly, such a realistic HH-type modeling
approach seems to be “computationally prohibitive, since
we can simulate only a handful of neurons in real time”
[16]. In search for a solution of this problem, a digital
FPGA hardware core has been designed on which actually
up to 400 conductance-based neurons with four voltage-
dependent currents can be implemented for real-time
simulations. A PC interface allows free parameter
adjustment including data storage and on-line display of
conventional synchronization measures [17]. An example
of real-time displayed graphics of synchronization studies
is given in Fig. 2.

The simulation in Fig. 2 shows the effects of
increasing nearest neighbor gap-junction coupling in a
network of Hodgkin-Huxley type neurons with
subthreshold currents operating in a pacemaker-like tonic
firing regime. Interestingly, gap-junction coupling initially
lengthens the interspike intervals and introduces
irregularities of spike generation (Fig. 2c) before more
regular pattern with shorter interspike intervals are

generated. This is accompanied by continuously
increasing synchronization (e.g. Fig. 2b) although still far
away from in-phase spike discharges.

The raster plot (Fig. 2a) indicates the spike timing of a
selected number of neurons. Its structure can provide
rough information about the type of synchronization. The
field potential (Fig. 2b) gives the mean voltage of all
neurons showing increasing deflections with increasing
in-phase synchronizations. Beyond these standard
procedures voltage traces of up to four selected neurons
(two in Fig. 2¢) can be plotted for more detailed insights.
The diagram of interspike intervals (IS, Fig. 2d) of one of
the selected neurons can provide elucidative information
about the relations between impulse pattern variations and
neuronal synchronization.
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Fig. 2: Real-time graphics of synchronization analysis using a
digital FPGA hardware core with a PC interface. Illustrated by
an 80s simulation run of 400 nearest neighbor coupled neurons
when the coupling strength is linearly increased from 0 to
20nS/cm?. a) Spike times of 100 neurons indicated by dots. b)
Field potential calculated as the mean voltage of all 400 neurons.
c) Voltage traces of two neurons. d) Interspike-intervals (ISI) of
one of the neurons.

Further attempts will be made to produce the digital
hardware as very large scale integrated circuits (VLSI). In
parallel, an analogue circuit of, so far, a single neuron,
acting as the impulse pattern generator, has been designed
[18]. Integrated circuits of a multiple of them would solve
any problems related to calculation time. In analogue
circuits the reaction time does not depend on the
network’s size, i.e. the number of implemented neurons.
Everything is going in parallel, as in the brain and the
speed in electronic circuits is much higher because
information is transmitted with light speed. However, any
computational or electronic model’s structure, also for
conductance-based simulations, is still light years away
from the brain’s complexity.
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4. Summary: The Conductance-Based Modeling
Approach as a Physiologically Justified Mid-out
Strategy for Multi-Level Simulations

In the introduction, we have recapped the particular
problems of the modeling of biological functions,
specifically in neurophysiology, arising from the multiple
levels and the nonlinear interdependencies between
different functions at each level as well as across the
levels that need to be considered. Indeed, a multitude of
computational approaches for studying biological systems
already exist and they all may have a specific value for
specific problem to be solved. However, a mathematical
model towards a better understanding of real brain
functions needs to represent the biologically relevant
parameters. This is the reason why we have emphasized
on the conductance-based approach as a valuable mid-out
strategy ~ that  allows  physiologically  justified
simplifications as well as model extensions whenever they
are required. We have given an example of
physiologically  justified  model simplifications,
specifically considering the neurons’ nonlinearities. We
have been referring to recent successful approaches
towards multi-level simulations demonstrating that the
applicability of conductance-based simulations beyond the
single neuron level can further be enhanced by the use of
appropriate computer technologies and the development
of new computational strategies.
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