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Abstract—In this paper, we addressed a search algo- !
rithm based on a mathematical swarming model described !
by stochastic dferential equations. The swarm model is o8
constructed by the attractive and repulsive forces as the re-
lationship among search points that imitated animate be-
ings. Numerical simulations are performed to shown avail-

abilities of the proposed method for function optimizationFigure 1: The shape of interaction functiofr = 2,D = 1)

1. Introduction to know the objective function’s shape dadits gradient

Manv pobulation based optimization algorithms Whosé/alues in the real world problems, it is necessary to dis-
Y bob P 9 cuss the the availability to search local minimum when the

concepts are based on social animal behaviors have been _. ! S .
adient of potential function is not available. So we also

C f
developed. For example, ant colony optimization employ%qow some model behavior with gradient value estimations

the concept based on a line of ants [1], artificial bee COIOnB’ased on simultaneous perturbation method [7] and based

employs the concept based on foraging behavior of hon%¥1 function approximation by using radial basis function

bees [2] and bacteria foraging optimization employs thﬁetwork 8]
concept based on chemotaxis of bacteria [3]. Especially, '
algorithms whose concepts are based on animal swarming

behaviors are called Swarm Intelligence. For representg- Stochastic Fish Schooling Model
i le, Particl imizati I . . . .
tive example, Particle Swarm Optimization developed by We consider that search points are driven by stochastic

Kennedy et. al. in 1995 [4] is one of them. . . :
On the other hand, mathematical swarming models ha\];'g'h schooling model [6]. In the model, fish has

been studied, e.g. Boids model [5]. In most of such.™ ngleader,

study, behavior of individuals in the swarm is expressed. common rule to move,

by continuous—time nonlinear dynamical systems and there  territory(it's radius isr),

are analysis aridr numerical study according to such be- . attraction and repulsion power,
havior. However there is few study from a viewpointtode- . yncertainty.

velop a optimization algorithms based on a mathematicat
swarming model described by stochastifetiential equa-
tions. We believe that the knowledge to develop/and
ana_dyze such model is useful to d_evelop optimization al- h(xi, X;)(Xi = Xj). (1)
gorithms and the knowledge also is useful to apply such

optimization algorithms to real world problems. In order toHere h(x;, x;) is a function according to interaction of a
develop an optimization algorithm by using mathematicgbare fish and the summation of interaction force is given
swarming model, we start to study about an optimizatioby

First, we consider that; is position ofi th fish, and the
interaction force from th fish is given by

algorithm based on stochastic fish schooling model [6]. N
In this paper, we introduce stochastic fish schooling Z _ h(xi, X;)(Xi = Xj). (2)
model, then we carry out numerical simulation to show the =L

behavior of fish school (i.e. search points) with an objective Second, we consider that fish move to a direction which
function as potential field in order to discuss an ability tdhe outside potential functiofi(x) is low. Thus, fish has
search local minimum. Note that our model uses the valuesforce—yV f(x;) which is proportional to the gradient of
of objective function’s gradient. Since it is oftenfiibult  f(x).
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Third, we consider that;dw; is added as a noise to po- /“\

sition of i th fish. . \
Finally, the velocity ofi th fish is denoted by;, then the , )

dynamics of the fish behavior is given by VAR N
| Q [

% =V + 0 % (3) \ —
dVi N T
Tt =0 D e x)06 - x) =y k). (4)
J=L Figure 2: 2—dimensional
Herea > 0 andy > 0 are constant. contour map of Doubl€igure 3: Initial position
It is difficult to solve such system by using analytic techCone function with D = 2.

nigue. The feater of such system is often shown by numeri-
cal experiments. By using the scheme of Euler method, we s |

get the discrete time model denoted by 7
Xi(t + At) = xi(8) + V(t + ADAL + o6 (A) (5) g
N al . 2]
V(t + At = wvi(t) — (@ Z h(xi(t), X (t)) o) o]
j=Lj#i . .
Oa(t) = x;(0) = YV F(xi(1))At. 6 s g 5 ® o 5 g 5

Herew is inertia constant. Figure 4: Positions in the final step with = 2, a = 1.
Additionally, we consider gentle force to attract and big = 1(left), r = 2(right).
force to repulse each other and we have

1 ~ 1
(Ixi = x;ll/r)P (Ixi = x;ll/r)9”

The forceh(x;, ;) is positive when||x; — x;ll > r and it
means that theth fish and thej th fish are attracted each 1 7
other. On the other hand the foriefx;, X;) is negative when ¢ | |
Ixi = xjll < r and it means that thieth fish and thg th fish 'so 5 0 5 10 o5 o 5 W
move away from each other. Moreoverandq are integer

constants wittp > g. These index numbers make a balanc&igure 5: Positions in the final step with = 2, @ = 2.
between attractive and repulsive forces. r = 1(left), r = 2(right).
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3. Numerical Simulation of Fish Schooling Model search points gather to the near by local minimums. Then
we find some cases that population is divided into two local
minimums or population gathers to ether local minimum. It
seems that population gathers to ether local minimum when

Here we employ Double Corn functiofa(-)) asf(x) in
equation (6).f4c(-) has two local minimum and it is defined

as ; : X
r is larger, since the movement of population become stable
Z( with large distances between each search points. Which to
blx — ol + 1 Ck” +17 gather is decided by the balance between interaction force
where we seb, = Lb, = 2,¢; = [-2,...,-2]",c, = and gradientgects.

[4,...,4]". Fig.2 shows 2—dimensional contour map.
In order to understand the dynamics of the model, wg, Applying to function with unavailable gradient
show the behavior of search points with several values of  ygjue
andr. The time step size is set & = 0.1 and final step
size isT = 4000. In the initial step, the positions of search Generally, population based optimization algorithm is
points are randomly sampled from uniform distribution [-required to find better solutions without gradient of objec-
10, 10] (an example of the positions is shown in Fig.2)tive function but functional values. Thus, we suggest to es-
initial velocity is set as 0, the other parameters are set éismate the value of gradient on each search point with two
N =10, (p.g) = (3,5),0 = 0.01,w = 0.9 andy = 5. ways. One is by using the same gradient estimation method
Fig.3 and fig.4 show the positions of the fish in the fito simulates perturbation method [7]. Another is by using
nal step withD = 2, « = 1,2,r = 1,2. In each case, differential values of radial basis function networks to ap-
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proximate a shape of the objective function. o o

4.1. gradient estimation by using simulates perturba- 0] . 0]
tion method

The estimated value &ff(x(t)) is defined as

F(x() + (b)) — F(x(t) - c®)i)
2c(t)i '

VE(x(®) ~

(8) 1

Herec(t) is perturbation vector anclt); is itsi th element.  Figyre 6: Positions in the final step wih = 2, w = 0.3
In order to show the swarm behavior, we carry out Nuangq = 1.1 = 1(left), r = 2(right).

merical experiment wittht = 0.1 and the final timel' =

4000. The value of gradient is estimated in each step. Fig.5%|
and 6 show the positions of search points in the final step. |
The set of parameters is same as in section 3 exoept
Here we also use = 0.3. By using estimated values of %< . %oy
the gradient, search points gather to local minimum. Thus | )
it seems to be possible to find local minimum. Fig.8-9 are '
step—position (in a dimension) figures and show the posi- 2|
tions of search points. From Fig.8-9, we can find that each
search point hpw go to a local min_imum. Moreover ﬁg'_lq:igure 7: Positions in the final step wih = 2, w =
show the maximum, mean and minimum values of obje 3,0 = 2.1 = 1(left), r = 2(right).

tive function in each step, and fig.11 show the values with ’
D = 5. An example of jumping out is shown in the
trajectory of search points in fig.9. It is because a pare
of search points come close each other. In this case, tr
distance between the pare of them so small, then a largs ‘
repulsion force from each other is occurred. As a result w{y
a pare of search points jumps out due to such large force;
Unstable movement like the above is not acceptable and ¥
is expected to chose the other interaction function to inhibi
from such movement. In addition, we find another example / .
that population is divided into two witly = 0.9 andr = 1 6 600 2000 3600 4600 A

but the movements are unstable when the search points @igure 8: Positions in each step with= 2,w = 0.3, = 1
near by local minimums. It seems that the above movemndr = 1.(left:xy, right:x,)

ments is due to some errors of estimation of gradient. Thu

10

-10

-5 04 5 10 -lo 5 q 5 10

R e e
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it is necessary to select the valuewfindor to chose the Q1
other way to estimate the gradient. - 2
4.2. gradient estimation by radial basis function net- = 577
work R ¥
The estimated value &ff(x(t)) is defined as 0 S |

6 1000 2000 000 400 | 6 1000 2000 3000 4000
v (Z Wk¢k(x)]- (9)  Figure 9: Positions in each stepwith= 2, w = 0.3,a = 1
k andr = 2.(left:xq, right:x,)

Herek is an index of search poinii(x) is kernel func-
tion andW is network weight. We use Gauss function
exp(—%(x—yk)T > 7Y(x—puy)) as kernel functiom(x). Here
the center of Gauss functigs is assigned to the positions T = 4000. we usev = 0.9, « = 1.0 andy = 1.0 with
of k th search point. Then we use diagonal matrix whiclr,s = 2.0,5.0. The value of gradient is estimated in 10
has same varianczlafbf in each dimension as the variance-steps. Fig.12—-14 show final positions of search points, po-
covariance matrix of Gauss functign. Network weights sitions in a dimension in each step and objective function
W is given by using LU decompose so8gWkgk(X) is fit  values. It seems that search points do not gather near by the
to observed objective functional values. local minimums. This behavior may be due to over-trained

In order to show the swarm behavior, we carry ouhetwork weight3\k. So how to give the weights and kernel
numerical experiment witiAt = 0.1 and the final time functions are under consideration.

- 308 -



ammff[, ]
08 10 12 14 16 18 2.0

x2

ammff[, ]
08 10 12 14 16 18 2.0

0 1000 2000 3000 4000 0

1000 2000 3000 4000

-10

-15

10

x2
-5

-15

5 0 5 10 15 20

x1

Figure 10: Functional value(maximum, mean, minimumJigure 12: Positions in the final step with= 2, v = 0.9,

in each step witth = 2, w = 0.3, = 1. r = 1(left),

r = 2(right).
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Figure 11: Functional value(maximum, mean, minimumf’ = 1-:0:¥ = 1.0. ooy
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in each step witth = 2, w = 0.3, = 2. r = 1(left),
r = 2(right).
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5. Conclusion

In this paper, we report the availability of new search
method for local minimums based on a mathematical
swarming model described by stochastiftetiential equa-
tions. Now only the behaviors with numerical experiment§igure 14: Functional value(maximum, mean, minimum)

are shown. However we will try to build a new modelin each step witth = 2, w

xx[, d, ]
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a =10,y =10. o = 2.0(left), ops = 5.0(right).
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Figure 13: Positions in each step with = 2, w = 0.9,

= 2(left), orps = 5(right).
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09, @ = 1.0,y = 10.

which include a better interaction force function and a be@rs = 2(left), oms = 5(right).
ter gradient estimation method.
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