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Abstract—In this paper, we addressed a search algo-
rithm based on a mathematical swarming model described
by stochastic differential equations. The swarm model is
constructed by the attractive and repulsive forces as the re-
lationship among search points that imitated animate be-
ings. Numerical simulations are performed to shown avail-
abilities of the proposed method for function optimization.

1. Introduction

Many population based optimization algorithms whose
concepts are based on social animal behaviors have been
developed. For example, ant colony optimization employs
the concept based on a line of ants [1], artificial bee colony
employs the concept based on foraging behavior of honey
bees [2] and bacteria foraging optimization employs the
concept based on chemotaxis of bacteria [3]. Especially,
algorithms whose concepts are based on animal swarming
behaviors are called Swarm Intelligence. For representa-
tive example, Particle Swarm Optimization developed by
Kennedy et. al. in 1995 [4] is one of them.

On the other hand, mathematical swarming models have
been studied, e.g. Boids model [5]. In most of such
study, behavior of individuals in the swarm is expressed
by continuous–time nonlinear dynamical systems and there
are analysis and/or numerical study according to such be-
havior. However there is few study from a viewpoint to de-
velop a optimization algorithms based on a mathematical
swarming model described by stochastic differential equa-
tions. We believe that the knowledge to develop and/or
analyze such model is useful to develop optimization al-
gorithms and the knowledge also is useful to apply such
optimization algorithms to real world problems. In order to
develop an optimization algorithm by using mathematical
swarming model, we start to study about an optimization
algorithm based on stochastic fish schooling model [6].

In this paper, we introduce stochastic fish schooling
model, then we carry out numerical simulation to show the
behavior of fish school (i.e. search points) with an objective
function as potential field in order to discuss an ability to
search local minimum. Note that our model uses the values
of objective function’s gradient. Since it is often difficult

Figure 1: The shape of interaction functionh (r = 2,D = 1)

to know the objective function’s shape and/or its gradient
values in the real world problems, it is necessary to dis-
cuss the the availability to search local minimum when the
gradient of potential function is not available. So we also
show some model behavior with gradient value estimations
based on simultaneous perturbation method [7] and based
on function approximation by using radial basis function
network [8].

2. Stochastic Fish Schooling Model

We consider that search points are driven by stochastic
fish schooling model [6]. In the model, fish has

· no leader,
· common rule to move,
· territory(it’s radius isr),
· attraction and repulsion power,
· uncertainty.

First, we consider thatxi is position ofi th fish, and the
interaction force fromj th fish is given by

h(xi , x j)(xi − x j). (1)

Here h(xi , x j) is a function according to interaction of a
pare fish and the summation of interaction force is given
by

N∑
j=1, j,i

h(xi , x j)(xi − x j). (2)

Second, we consider that fish move to a direction which
the outside potential functionf (x) is low. Thus, fish has
a force−γ∇ f (xi) which is proportional to the gradient of
f (x).
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Third, we consider thatσidωi is added as a noise to po-
sition of i th fish.

Finally, the velocity ofi th fish is denoted byvi , then the
dynamics of the fish behavior is given by

dxi

dt
= vi + σi

dωi

dt
(3)

dvi

dt
= −α

N∑
j=1, j,i

h(xi , x j)(xi − x j) − γ∇ f (xi). (4)

Hereα > 0 andγ > 0 are constant.
It is difficult to solve such system by using analytic tech-

nique. The feater of such system is often shown by numeri-
cal experiments. By using the scheme of Euler method, we
get the discrete time model denoted by

xi(t + ∆t) = xi(t) + v(t + ∆t)∆t + σϵi(∆t) (5)

v(t + ∆t) = ωvi(t) −
(
α

N∑
j=1, j,i

h(xi(t), x j(t))

(xi(t) − x j(t)) − γ∇ f (xi(t))
)
∆t. (6)

Hereω is inertia constant.
Additionally, we consider gentle force to attract and big

force to repulse each other and we have

h(xi , x j) =
1

(∥xi − x j∥/r)p
− 1

(∥xi − x j∥/r)q
. (7)

The forceh(xi , x j) is positive when∥xi − x j∥ > r and it
means that thei th fish and thej th fish are attracted each
other. On the other hand the forceh(xi , x j) is negative when
∥xi − x j∥ < r and it means that thei th fish and thej th fish
move away from each other. Moreover,p andq are integer
constants withp > q. These index numbers make a balance
between attractive and repulsive forces.

3. Numerical Simulation of Fish Schooling Model

Here we employ Double Corn function(fdc(·)) as f (x) in
equation (6).fdc(·) has two local minimum and it is defined
as

fDC =

2∑
k=1

(1− 1
bk∥x − ck∥ + 1

),

where we setb1 = 1,b2 = 2, c1 = [−2, . . . ,−2]T , c2 =

[4, . . . , 4]T . Fig.2 shows 2–dimensional contour map.
In order to understand the dynamics of the model, we

show the behavior of search points with several values ofα
andr. The time step size is set as∆t = 0.1 and final step
size isT = 4000. In the initial step, the positions of search
points are randomly sampled from uniform distribution [-
10, 10] (an example of the positions is shown in Fig.2),
initial velocity is set as 0, the other parameters are set as
N = 10, (p,q) = (3,5),σ = 0.01,ω = 0.9 andγ = 5.

Fig.3 and fig.4 show the positions of the fish in the fi-
nal step withD = 2, α = 1,2, r = 1,2. In each case,

Figure 2: 2–dimensional
contour map of Double
Cone function
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Figure 3: Initial position
with D = 2.
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Figure 4: Positions in the final step withD = 2, α = 1.
r = 1(left), r = 2(right).
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Figure 5: Positions in the final step withD = 2, α = 2.
r = 1(left), r = 2(right).

search points gather to the near by local minimums. Then
we find some cases that population is divided into two local
minimums or population gathers to ether local minimum. It
seems that population gathers to ether local minimum when
r is larger, since the movement of population become stable
with large distances between each search points. Which to
gather is decided by the balance between interaction force
and gradient effects.

4. Applying to function with unavailable gradient
value

Generally, population based optimization algorithm is
required to find better solutions without gradient of objec-
tive function but functional values. Thus, we suggest to es-
timate the value of gradient on each search point with two
ways. One is by using the same gradient estimation method
to simulates perturbation method [7]. Another is by using
differential values of radial basis function networks to ap-
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proximate a shape of the objective function.

4.1. gradient estimation by using simulates perturba-
tion method

The estimated value of∇ f (x(t)) is defined as

∇ f (x(t)) ≃ f (x(t) + c(t)i) − f (x(t) − c(t)i)
2c(t)i

. (8)

Herec(t) is perturbation vector andc(t)i is its i th element.
In order to show the swarm behavior, we carry out nu-

merical experiment with∆t = 0.1 and the final timeT =
4000. The value of gradient is estimated in each step. Fig.5
and 6 show the positions of search points in the final step.
The set of parameters is same as in section 3 exceptω.
Here we also useω = 0.3. By using estimated values of
the gradient, search points gather to local minimum. Thus
it seems to be possible to find local minimum. Fig.8–9 are
step–position (in a dimension) figures and show the posi-
tions of search points. From Fig.8–9, we can find that each
search point how go to a local minimum. Moreover fig.10
show the maximum, mean and minimum values of objec-
tive function in each step, and fig.11 show the values with
D = 5. An example of jumping out is shown in thex1

trajectory of search points in fig.9. It is because a pare
of search points come close each other. In this case, the
distance between the pare of them so small, then a larger
repulsion force from each other is occurred. As a result,
a pare of search points jumps out due to such large force.
Unstable movement like the above is not acceptable and it
is expected to chose the other interaction function to inhibit
from such movement. In addition, we find another example
that population is divided into two withω = 0.9 andr = 1
but the movements are unstable when the search points are
near by local minimums. It seems that the above move-
ments is due to some errors of estimation of gradient. Thus
it is necessary to select the value ofω and/or to chose the
other way to estimate the gradient.
4.2. gradient estimation by radial basis function net-

work

The estimated value of∇ f (x(t)) is defined as

∇
∑

k

Wkϕk(x)

 . (9)

Here k is an index of search point,ϕk(x) is kernel func-
tion andWk is network weight. We use Gauss function
exp(− 1

2(x−µk)T ∑−1(x−µk)) as kernel functionϕk(x). Here
the center of Gauss functionµk is assigned to the positions
of k th search point. Then we use diagonal matrix which
has same varianceσ2

rb f in each dimension as the variance–
covariance matrix of Gauss function

∑
. Network weights

Wk is given by using LU decompose so as
∑

k Wkϕk(x) is fit
to observed objective functional values.

In order to show the swarm behavior, we carry out
numerical experiment with∆t = 0.1 and the final time
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Figure 6: Positions in the final step withD = 2, ω = 0.3
andα = 1. r = 1(left), r = 2(right).

−10 −5 0 5 10
−

10
−

5
0

5
10

x1
x2

−10 −5 0 5 10

−
10

−
5

0
5

10

x1

x2

Figure 7: Positions in the final step withD = 2, ω =
0.3, α = 2. r = 1(left), r = 2(right).

Figure 8: Positions in each step withD = 2,ω = 0.3,α = 1
andr = 1.(left:x1, right:x2)

Figure 9: Positions in each step withD = 2,ω = 0.3,α = 1
andr = 2.(left:x1, right:x2)

T = 4000. we useω = 0.9, α = 1.0 andγ = 1.0 with
σrb f = 2.0,5.0. The value of gradient is estimated in 10
steps. Fig.12–14 show final positions of search points, po-
sitions in a dimension in each step and objective function
values. It seems that search points do not gather near by the
local minimums. This behavior may be due to over-trained
network weightsWk. So how to give the weights and kernel
functions are under consideration.
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Figure 10: Functional value(maximum, mean, minimum)
in each step withD = 2, ω = 0.3, α = 1. r = 1(left),
r = 2(right).
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Figure 11: Functional value(maximum, mean, minimum)
in each step withD = 2, ω = 0.3, α = 2. r = 1(left),
r = 2(right).

5. Conclusion

In this paper, we report the availability of new search
method for local minimums based on a mathematical
swarming model described by stochastic differential equa-
tions. Now only the behaviors with numerical experiments
are shown. However we will try to build a new model
which include a better interaction force function and a bet-
ter gradient estimation method.
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