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Abstract—
The brain is a complex structure that can contain up to

several billion neurons connected to each other. One pos-
sible way to study its structure is to design neural compu-
tation algorithms for simulating a simplified mathematical
modelisation with several features of the brain and its neu-
rons inspired by their biological features. Due to the large
number of neurons and brain dynamics, the mathematical
object representing the simulated brain can be considered
as a complex network and a study of its dynamic structure
is possible by using graph theory [1] to calculate a number
of relevant measures [2] that evolve over time in order to
observe emergent properties associated to network dynam-
ics. In this context, we have provided some simulations of
bio-inspired complex neural network modeled by a hierar-
chically organized circuit of evolvable neural networks [3].
This model is based on the observations that the vertebrate
brain possess several specific areas organized and con-
nected by a hierarchical topology. Neurons are simulated
by leaky integrate and fire spiking neurons interconnected
by modifiable synapses according to Spike Time Depen-
dent Plasticity (STDP). An other study [4] suggest that the
introduction of a feedback connection between two net-
works hierarchicaly organized can modify their dynamic
structure with unexpected differences between the two net-
works. We studied two hierarchical topologies based upon
the feedforward topology with and without recurrent loops.
The purpose of this paper is to present new datas on geo-
metrical properties of the networks by means of graph anal-
ysis. Some basic graph measures are represented with time
dependency considerations by using the R software pack-
age ”Igraph” [5]. In this simulation, there is no cell death
except apoptosis, we chose to present results based on the
analysis of different sets of excitatory neurons selected fol-
lowing their level of activity.

1. Introduction

In this article, we studied two topologies, FFHN and
FFHL. A sensory network receive all external stimulations.
Then, we considered hierarchicaly neural networks made
of 9 processing levels. Each level is composed of two neu-
ral networks. A network i from the level Li will project
activity on a network j from the level L j only if L j − Li

is equal to 0 or 1. In the topology FFHL, networks of the

level 9 can project activity on networks of the level 2. The
two topologies are shown in the figure 1.
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Figure 1: The feedforward topology with (right panel,
FFHL) and without (left panel, FFHN) recurrent loops.

2. Simulations

The simulation’s parameters were set in order to be bio-
inspired. Neurons are either type excitatory or inhibitory
and the network is generated so that the proportion of exci-
tatory neurons is close to 80%. The potential of the neuron
is increased by excitator neuron spike and decreased by in-
hibitory neuron spike. If the potential of the neuron exceed
the threshold level then the neuron produce a spike to oth-
ers connected neurons and return to its resting potential.
the neuron that has just been fired enters into a refractory
period and can’t spike during this period. At each time step
t, the value of the membrane potential of the ith unit, Vi(t),
is calculated [6] such that

Vi(t + 1) = Vrest + Bi(t)
+(1 − S i(t)) kmem (Vi(t) − Vrest)

+
∑

j

ω ji(t)

(1)
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Figure 2: Histogram of neuron’s activity at 4 selected moments, #1000 (4521 neurons selected), #200000 (2953 neurons
selected), #250000 (3710 neurons selected) and #300000 (2982 neurons selected). The death neurons (killed by apoptosis)
are colored in black and the red line is one of the four selection limit used in this study. The activity of a neuron is measured
by the potential of the neuron added by the sum of the strengths of edges from other neurons.

where Vrest corresponds to the value of the resting po-
tential (−78mV in this simulation), Bi(t) is the background
activity arriving to the ith unit, S i(t) is the state of the ith

unit (0 for ”not fired” and 1 for ”fired”), kmem = exp
(

1
τmem

)
is the constant associated to the current of leakage for
the units, w ji(t) are the post-synaptic potentials of the jth

units projecting to the ith unit. The resting potential of the
neurons is −78mV and the threshold level is −40mV .

Modeling is done using the simulator described in
[6, 7]. Structural files designed specifically for structural
analysis are provided at the request of the user. We selected
44 moments during lifetime of the network to explore it’s
parameters in a first analysis and 92 moments for a second
analysis. 1024ts represent 1 second. At the time step
#3072, the network receive stimulations for 512ts then
there is no stimulation for 1024ts and then this pattern is
repeated to the end of the simulation. The simulation has
be done with a grid of 75 × 75 = 5625 neurons and the
spike timing dependent plasticity is implemented as in [8].

3. Graph analysis

The simulated network is represented as a graph. The
neurons are viewed as vertices and the neurons projections
as edges. The adjacency matrix A is a representation of a
network G. We have

Ai j =

{
1 if ei j ∈ G
0 otherwise. (2)

where ei j is the edge between the vertex i and j. In
this case, the edges are directed and the graph is called
asymetric because the adjacency matrix is asymetric.

If a weight is assigned to each edge of the graph,
this one is called a weighted graph and elements of the
adjacency matrix can be different of the value 1. To
measure networks evolution, we calculated, using the R
package ”igraph”, the next variables [9] :
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Figure 3: Mean of the geodesic distance for the two topolo-
gies and two sets of neurons (most active and all cells).

• the average degree : the degree ki of a vertex,
in a graph G with n vertices, is the number of
edges connected to it. We have, in undirected
graphs, ki =

∑n
j=1 Ai j and in directed graphs,

kin
i =

∑n
j=1 Ai j and kout

i =
∑n

j=1 A ji.

Note that we can also see a directed graph as an
undirected graph (with a loss of information) to
calculate some usefull value so that all measures
about the non directed graphs could be relevant to the
directed graphs. The average degree is calculated as :

k̄ =
1
n

n∑
i=1

ki =
1
n

n∑
i=1

n∑
j=1

Ai j (3)

• the mean of the geodesic distance : the geodesic
distance between two vertices in a graph is the
number of edges in a shortest path connecting them.
There are several algorithms to compute the geodesic
distance but the best known is Dijkstra’s one [10].

The mean and the standart deviation of the geodesic
distance is calculated with the application of Dijk-
stra’s algorithm on the graph. This algorithm gives,
by construction [10], the shortest path for each vertex
of the considered graph.

• the number and the maximum length of strongly
connected clusters : a clustering coefficient is a mea-
sure of degree which nodes in a graph tend to clus-
ter together. A directed graph is called strongly con-
nected if there is a path from each vertex in the graph
to every other vertex. In particular, this also means a
paths in each direction, a path from n1 to n2 and a path
from n2 to n1.

• the global transitivity : the global clustering coeffi-
cient or the global transitivity of a undirected graph is
based on triples. Let be u, v and w three vertices of
a undirected gaph. If there is a edge between u and v
and between v and w, we can say that u and w has a
common neighbor. If the triple is closed, u and w are
neigbor thereself and we have a triangle uvw which
contain the triples uvw, vwu and wuv. The global
clustering coefficient can be defined as the fraction of
closed triples, so the division of three times the num-
ber of triangles (because they contain three triples) by
the number of connected triples :

C =
3 ∗ (number of triangles)

(number of connected triples)
(4)

4. Results

The first analysis represent 44 moments from time step
#1000 to #350000. Evolution of all measures are plotted
as a function of time. We noticed a significant peaks of
neural activity at time step #250000. This renewed activity
is observed in figure 2. To increase accuracy, we provided
other simulations for a second analysis which represent 92
moments from #2560 to #996352. With the additions of
different limitations for the selection criteria of the most
excitatory neurons, we have found that this peak has no
long term impact.

In our simulations, the global transitivity, the number
of projections and the average degree did not show
emergent behavior and decrease throughout the simulation
reaching a stabilization towards the end of the simulation.
The measure of maximum length of strongly connected
clusters showed that this length tends quickly to 0. Indeed,
with decreasing number of projections, the maximum
length of strongly connected clusters will also decrease
and 0 is reached, for all networks, from around the
time step #600000. Indeed, the condition type ”strongly
connected” is constraining and the complex networks that
we have simulated does not keep long strongly connected
clusters.

However, the measure of the geodesic distance has
shown more interresting behavior in our simulations. As
we can see in figure 3, there is a very large peak for all
networks. We observe this peak earlier for the most active
cells but the largest peak is not alway linked to the same
topology (there is an inversion observed in figure 3). In
figure 4, we observe that the average degree do not appear
to influence the decreasing of the mean of the geodesic
distance. We can see an inversion of peak height between
the level 2 and 5 for the two topologies.
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Figure 4: Average degree (solid lines) and Mean of the
geodesic distance (dotted lines) as a function of time for
level 1, 2, 5 and 9. Each level is represented by a mean of
the two networks which composed the level.

5. Conclusion and perspectives

We did this study in order to observe emergent behavior
on some basic measures of graph theory. We found an
interesting behavior reflected by the mean of the geodesic
distance which shows variations that were not expected
from other measures. In a first time, the geodesic distance
increases with the decreasing of the average degree. In-
deed, there are less projections so the mean of the geodesic
distance is higher. But, in a second time, the mean of the
geodesic distance decreases with the decreasing of the
average degree.

One possible explanation for this phenomenon is that
the set of neurons that contributes to increase the mean of
the geodesic distance has, on average, a low number of
connections. They will become completely inactive and
they will not influence any more the network, decreasing
the mean geodesic distance. This suggests that the network
improves its structure and arrives to maturity.

It is clear that this study represent a first step in stud-
ies which are targeted at determination of the same
measures for other types of bio-inspired simulations. An
improve of this study is to explore with greater statistical
samples of hierarchically organized circuit simulation and
with the development of more sophisticated graph theory
measures, particularly in terms of geodesic distance and
the detection of clusters according to the weight of the
synapses.
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