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Abstract—The concept of interdependent communica-
tions systems and Wiener’s assertion that a machine that
changes its responses based on feedback is a machine that
learns, defines the brain as a cybernetic machine. Systems
theory has traditionally focused on the structure of systems
and their models, whereas cybernetics has focused on how
systems function, how they control their actions, how they
communicate with other systems or with their own compo-
nents. However, structure and function of a system cannot
be understood in separation and cybernetics and systems
theory should be viewed as two facets of a single approach,
defined as the neuroheuristic approach.

1. Introduction

Norbert Wiener, a mathematician, engineer and social
philosopher, coined the word ”cybernetics” from the Greek
word meaning ”steersman”. He defined it as the science of
control and communication in the animal and the machine
[1]. Many other definitions have followed since then, but
in general cybernetics takes as its domain the design or dis-
covery and application of principles of regulation and com-
munication. Early work sought to define and apply prin-
ciples by which systems may be controlled. More recent
work has attempted to understand how systems describe
themselves, control themselves, and organize themselves.

The cerebral cortex is not a single entity but an impres-
sive network formed by an order of tens of millions of neu-
rons, most of them excitatory, and by about ten times more
glial cells. Ninety percent of the inputs received by a cor-
tical area come from other areas of the cerebral cortex. As
a whole, the cerebral cortex can be viewed as a machine
talking to itself and could be seen as one big feedback sys-
tem subject to the relentless advance of entropy, which sub-
verts the exchange of messages that is essential to contin-
ued existence (Wiener, 1954). This concept of interdepen-
dent communications systems, also known as systems the-
ory, coupled with Wiener’s assertion that a machine that
changes its responses based on feedback is a machine that
learns, defines the cerebral cortex as a cybernetic machine.
Therefore, the focus of investigation is shifted from com-
munication and control to interaction. Systems theory has
traditionally focused more on the structure of systems and
their models, whereas cybernetics has focused more on

how systems function, that is to say how they control their
actions, how they communicate with other systems or with
their own components. However, structure and function of
a system cannot be understood in separation and cybernet-
ics and systems theory should be viewed as two facets of a
single approach, defined as “the neuroheuristic approach”.

2. Classical and Interactive Computation

McCulloch and Pitts [2] proposed a modelization of the
nervous system as a finite interconnection of logical de-
vices. For the first time, neural networks were consid-
ered as discrete abstract machines, and the issue of their
computational capabilities investigated from the automata-
theoretic perspective. Further developments of this per-
spective opened up the way to the theoretical approach to
neural computation [3, 4, 5].

A Turing machine (TM) consists of a infinite tape, a head
that can read and write on this tape, and a finite program
which, according to the current computational state of the
machine and the current symbol read by the head, deter-
mines the next symbol to be written by the head on the
tape, the next move of the head (left or right), and the next
computational state of the machine. The classical Turing
paradigm of computation corresponds to the computational
scenario where a system receives a finite input, processes
this input, and either provides a corresponding output or
never halts. According to the Church-Turing Thesis, the
Turing machine model is capable of capturing all possible
aspects of algorithmic computation [6].

The concept of a Turing machine with advise (TM/A)
provides a model of computation beyond the Turing lim-
its. It consists of a classical Turing machine provided with
an additional advise function α : N −→ {0, 1}+ as well
as an additional advise tape, and such that, on every in-
put u of length n, the machine first copies the advise word
α(n) on its advise tape and then continues its computa-
tion according to its finite Turing program. A Turing ma-
chine with polynomial-bounded advise (TM/poly(A)) con-
sists of a TM/A whose advice length is bounded by some
polynomial. Turing machines with (polynomial) advice are
strictly more powerful than Turing machines.

In the brain, learning and memory phenomena must af-
fect the perception of future inputs older memories them-
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selves may change with response to new inputs. The gen-
eral interactive computational paradigm consists of a step
by step exchange of information between a system and its
environment [7]. In order to capture the unpredictability
of next inputs at any time step, the dynamically generated
input streams need to be modeled by potentially infinite
sequences of symbols [8] In most basic scenarios, the envi-
ronment sends a non-empty input bit to the system at ev-
ery time step (full environment activity condition), then
the system updates its current state accordingly, and then
it produces either a corresponding output bit, or remains
silent for a while, thus expressing the need of some internal
computational phase before generating a new output bit, or
remains silent forever to express the fact that it died.

An interactive Turing machine (I-TM) consists of a clas-
sical Turing machine, yet provided with input and output
ports rather than tapes in order to process the interactive
sequential exchange of information between the device and
its environment [9]. An interactive Turing machine with
advice (I-TM/A) M consists of an interactive Turing ma-
chine provided with an advice mechanism which takes the
form of an advice function α : N −→ {0, 1}∗ [9]. The ma-
chine M uses two auxiliary special tapes, an advice input
tape and an advice output tape, as well as a designated ad-
vice state. During its computation,M can write the binary
representation of an integer m on its advice input tape, one
bit at a time. Yet at time step n, the number m is not allowed
to exceed n. Then, at any chosen time, the machine can en-
ter its designated advice state and then have the finite string
α(m) be written on the advice output tape in one time step,
replacing the previous content of the tape. Interactive Tur-
ing machines with advice were proved to be strictly more
powerful than interactive Turing machines [9].

3. Recurrent Neural Networks

A recurrent neural network (RNN) consists of a syn-
chronous network of neurons (or processors) related to-
gether in a general architecture – not necessarily loop free
or symmetric. The network contains a finite number of
neurons (x j)N

j=1, as well as M parallel input lines carry-
ing the input stream transmitted by the environment, and
P designated output neurons among the N whose role is to
communicate the output of the network to the environment.
At each time step, the activation value of every neuron
is updated by applying a linear-sigmoid function to some
weighted affine combination of values of other neurons or
inputs at previous time step. Formally, given the activation
values of the internal and input neurons (x j)N

j=1 and (u j)M
j=1

at time t, the activation value of each neuron xi at time t + 1
is then updated by the following equation

xi(t + 1) = σ

 N∑
j=1

ai j · x j(t) +

M∑
j=1

bi j · u j(t) + ci

 (1)

for i = 1, . . . ,N, where all ai j, bi j, and ci are numbers de-
scribing the weighted synaptic connections and weighted
bias of the network, and σ is the classical saturated-linear
activation function defined by σ(x) = 0 if x < 0, σ(x) = x
if 0 ≤ x ≤ 1, and σ(x) = 1 if x > 1.

A RNN is called rational (denoted by RNN[Q]) if all its
synaptic weights are rational numbers and real or analog
(denoted by RNN[R]) if all its synaptic weights are real
numbers [10]. Since rational numbers are real, any rational
network is a particular analog network by definition. In the
case of dynamic synaptic weights, the dynamics of evolv-
ing recurrent neural network (Ev-RNN) [11] is defined by

xi(t + 1) = σ

 N∑
j=1

ai j(t) · x j(t) +

M∑
j=1

bi j(t) · u j(t) + ci(t)


(2)

for i = 1, . . . ,N, where all ai j(t), bi j(t), and ci(t) are
bounded and time-dependent synaptic weights, and σ is
the classical saturated-linear activation function. A signif-
icant breakthrough concerning the computational power of
RNN was the demonstration that rational RNN are compu-
tationally equivalent to Turing machines [10]. The Turing
universality of rational neural networks to a broader class
of sigmoidal activation functions was further generalized
[12]. Furthermore, it was recently demonstrated that in-
teractive rational recurrent neural networks (I-RNN) are
computationally equivalent to interactive Turing machines
[11]. This result was generalized and it was proved that
interactive analog RNN are computationally equivalent to
interactive Turing machines with advice [11]. Analog [10]
and evolving networks provide natural models of computa-
tion beyond the Turing limits, both in the classical as well
as in the interactive computational frameworks [13, 14].

4. Neural Dynamics

In a different intereactive-like computational framework,
the concept of an ω-analog recurrent neural network (ω-
RNN[R]) as an interactive RNN with real synaptic weights
was generalized [15]. The network receives an infinite in-
put stream of bits from its environment and produces a cor-
responding output stream of bits. The input stream is then
said to be accepted by the network if the corresponding
output remains forever active, i.e. never shuts down to 0
from some time step onwards. The language recognized
by the network is then defined as the set of input streams
that are accepted by the network. In this framework analog
RNNs are strictly more expressive that deterministic and
non-deterministic Turing machines equipped with Büchi or
Muller accepting conditions. Such networks perform lan-
guage recognition over the space of infinite streams of bits
rather than ω-translations of infinite streams of bits [15].

The activity of each cell is necessarily related to the
combined activity in the neurons that are afferent to it. In
the cerebral cortex, due to the presence of reciprocal con-
nections between cortical areas, re-entrant activity through
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chains of neurons is likely to occur in all brains. Develop-
mental and/or learning processes are likely to potentiate or
weaken certain pathways through the network by affecting
the number or efficacy of synaptic interactions between the
neurons [16]. Despite the plasticity of these phenomena it
is rationale to suppose that whenever the same information
is presented in the network the same pattern of activity is
evoked in a circuit of functionally interconnected neurons,
referred to as cell assembly [17]. In cell assemblies inter-
connected in this way some ordered sequences of interspike
intervals will recur. Such recurring, ordered, and precise
(in the order of few ms) interspike interval relationships
are referred to as spatiotemporal patterns of discharges or
preferred firing sequence. Several evidence exist of spa-
tiotemporal firing patterns in behaving animals, from rats
to primates [18, 19], where preferred firing sequences can
be associated to specific types of stimuli or behaviors.

The whole time series of spike occurrences is assumed
to be an expression of some fundamental process govern-
ing the activity of the neurons being analyzed. When a
specific input pattern activates a cell assembly, the neurons
are activated following a certain mode. Then, a mode of
activity defines how an information is processed within a
neural network and how it is associated to the output pat-
tern of activity that is generated [20]. In this framework the
state of the neural network is defined by a set of parameters
characterizing the neural network at a certain time. Then,
the state of the network at any given time is represented by
the values of these parameters and a network state is fully
determined if all parameters are known for each neuron. If
we were able ab absurdo to set the same initial conditions
for all elements we would obtain the same spike trains.

It is rationale to describe the activity of the network with
the spike trains of all its elements, expressed by point-like
processes. Let us consider a simple point process system,
whose dynamics is characterized by discrete steps in time.
Let {xi}, i = 1, . . . ,K, be a time series with K points, where
x represents the state of the system. In a dynamical sys-
tem the subsequent state of the system is determined by its
present state, e.g. a map defined by xi+1 = axi , where a
is a control parameter. The expression xi+1 = axi(1 − xi)
, known as the logistic map, illustrates a simple dynami-
cal system with a negative nonlinear feedback, defined for
x ∈ [0, 1]. It is clear from this expression that the time
arrow is non-reversible, because it is always possible for
each xi to obtain a value xi+1 but there are two possible
xi for each xi+1. A dynamical system is deterministic if it
is possible to predict precisely its evolution if one knows
exactly the initial conditions. However, slight changes or
incorrect measurement in the initial conditions results in a
seemingly unpredictable evolution of the system.

A passage in time of a state defines a process and when-
ever it is completely deterministic at each step of its tem-
poral evolution but unpredictable over the long term it is
called chaotic process. Notice that analog RNNs are able
to express the nonlinear dynamical properties characteris-

tic of chaotic behaviors [21]. An equivalent definition of a
process is a path over time, or trajectory, in the space of
states. The points approached by the trajectory as the time
increases to infinity are called fixed points and the set of
these points forms an attractor.

Spike trains are treated as point process systems and a
crucial requirement for a theoretical framework is to iden-
tify these point process systems without any assumption as
to whether or not they are linear. Point process systems are
said to be identified when an acceptable model is found.
Notice that the goodness of fit of a certain kernel estimate
as plausible is evaluated by means of a function f describ-
ing its mode of activity –the mode of activity being defined
by how an information is processed within a neural network
and how it is associated to the output pattern of activity
that is generated. In formal terms, let us define a probabil-
ity function f which describes how a state x′ is mapped into
the space of states. If the function is set by a control param-
eter µ we can write fµ(x) = f (x, µ). A dynamical system x′

is a subset of the space of states and can be obtained by
taking the gradient of the probability function with respect
to the state variable, that is x′ = grad fµ(x). Mathematically
speaking, the space of states is a finite dimensional smooth
manifold assuming that f is continuously differentiable and
the system has a finite number of degrees of freedom [22].
Let us consider again the case of RNNs where the com-
plexity of the system is such that several attractors may ap-
pear, moving in space and time across different areas of
the network. Such complex spatio-temporal activity may
be viewed more generally as an attracting state, instead of
simply an attractor [23].

In the case of two control parameters, x ∈ R, µ ∈ R2, the
probability function f is defined as the points µ of R2 with a
structurally stable dynamics of x′ = grad fµ(x). That means
the qualitative dynamics x′ is defined in a neighborhood of
a pair (x0, µ0) at which f is in equilibrium (e.g. minima,
maxima, saddle point). With these assumptions, the equi-
librium surface is geometrically equivalent to the Riemann-
Hugoniot or cusp catastrophe described by Thom [24]. Ac-
cording to this model the equilibrium surface could repre-
sent stable modes of activity with postsynaptic potential ki-
netics and the membrane excitability as control parameters
[25]. Then, the same neural network may subserve several
modes of activity through modulation of its connectivity,
e.g. according to learning or pathological processes, or by
modulation of its excitability [26], e.g. by modulation of
the resting potential or of the synaptic time constants.

5. Discussion

The specific super-Turing model of a TM/A has a natural
fit to capture the computational capabilities of basic brain-
like models. The emergence of new concepts unbound by
a restrictive definition of coding should include the investi-
gation of the computing power of evolvable RNNs, the sig-
nificance of preferred firing sequences and the mechanism
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of their generation and propagation. The open question of
how structured information is represented in the brain can-
not be avoided. [27]. As engineers increasingly are in-
clined to look for inspiration from biology, this question
is also of general relevance for information technologies.
To use a metaphor, we could state that “the neuroheuris-
tic approach” observes the experimental results beyond the
surrounding wall of the hypothesis by coupled conjecture
and testing, similarly to a child playing in a garden while
observing what happens beyond whatever enclosure sur-
rounds him, which could be a hedge, a gate or a lattice. All
of these are closures but they are all different and belong to
distinct topoı̈. However, the complexity of problems pre-
sented to the researcher of today is of such a broad span that
the database approach is unable of reducing its computa-
tional performance to a disciplinary dimension. The neuro-
heuristic approach to brain sciences attempts to promote a
paradigm based upon synergy between Modelling and Ex-
periments which parallels the synergy between Computer
and Information Sciences with the Neurosciences.
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