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Abstract—This paper focuses on a logical behav-
ior of coupled memory devices consisting of nonlinear
micro-electro-mechanical systems (MEMS) resonators.
A nonlinear MEMS resonator substantially exhibits
two coexisting stable states, hysteretic characteristics,
and so on. Previous studies showed that a nonlinear
MEMS resonator can be applied as a mechanical 1-bit
memory device and can be used as AND and OR logic
gates. From the standpoint of application of logic sys-
tem by using the coupled nonlinear MEMS resonators,
we address the controlling nonlinear behavior by nu-
merical simulations.

1. Introduction

Micro-electro-mechanical systems (MEMS) devices
have micron-scale dimensions and contain both elec-
trical and mechanical components. MEMS resonators,
fabricated by MEMS technology, have been used as
frequency references, sensor elements, and filters. At
higher vibration amplitudes, a MEMS resonator ex-
hibits interesting nonlinear responses such as softening
behavior and hardening behavior [1]. In particular,
such a nonlinear MEMS resonator exhibits hysteretic
responses. At any given frequency in the hysteretic
regime, a MEMS resonator can exist in two coexisting
stable states and an unstable state [2].

Recently, mechanical information processing has
been studied in micro- and nano-electro-mechanical
resonators as for logic [3]～[6] and memory [7]～[12] de-
vices. Having two coexisting stable states correspond-
ing to large and small amplitude vibrations, a nonlin-
ear MEMS resonator can function as a 1-bit mechani-
cal memory indicating “1” and “0” at large and small
vibrations [7]. Guerra et al. demonstrated that a non-
linear MEMS resonator can be used as AND and OR
logic gates [4]. These preceding results motivated us to
develop a logic device with coupled multi-resonators.

This paper addresses a 2-bit counter [13] in the
logic system. The logic system is a prospective ap-
plication of nonlinear dynamics and resonance in cou-
pled MEMS resonators. The authors have already
shown the experimental success of the 2-bit binary
counter that consists of coupled nonlinear MEMS res-
onators [14]. Based on our previous study, we numer-
ically confirm the switching control in coupled nonlin-
ear MEMS resonators as a 2-bit binary counter.

2. MEMS resonator and its steady states

A single MEMS resonator is fabricated using silicon
on insulator (SOI) technology as shown in Fig. 1 [15,
16]. When the MEMS resonator is excited, the mass
vibrates in the lateral direction with weak link to the
longitudinal and vertical directions. In this paper, two
MEMS resonators are used. The dynamics of a MEMS
resonator, which is a single element of the coupled
MEMS resonators, is described by















dxj

dt
= yj ,

dyj

dt
= −

yj

Qj

− xj − αjx
3
j + (kj + uj) sin ωjt,

(1)

where j = 1, 2. Here xj denotes the displacement
of the j-th MEMS resonator in the coupled system,
yj the velocity of displacement, Qj the quality factor
(Q1 = Q2 = 282), αj the coefficient of cubic correc-
tion to linear restoring force (α1 = α2 = 3.23), kj the
amplitude of the excitation force, uj the control in-
put, and ωj the excitation frequency (ω1 = ω2). The
parameter settings, owing to [17], are used because
the same device is assigned to the coupled system. In
Sec. 2, the dynamics of a single MEMS resonator is
considered without control input uj.

Figure 2 shows the amplitude-frequency response
curve of the resonator by a numerical simulation at
kj = 0.001. The red and aqua lines correspond to two
stable states and an unstable state, respectively. The

Figure 1: Schematic diagram of a single resonator.
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Figure 2: Amplitude-frequency response curve at kj =
0.001. Red lines show two stable solutions and the
aqua line an unstable solution.

hysteresis region exists at 1.011 < ω < 1.080 in Fig. 2.
In the hysteresis region, two coexisting stable states
strongly depend on the sweep direction. In the follow-
ing calculations, the excitation frequency ωj is set at
1.02 as shown in Fig. 2. The green point is regarded
as the “1” state and the blue point as the “0” state.

Figure 3 shows a simulated response as a function
of the amplitude of the excitation force at ωj = 1.02.
This simulated curve shows the hysteric behavior when
the amplitude of excitation is swept from left to right
(increase) and right to left (decrease). When the ex-
citation force is increased (decreased), the state is
switched to the large (small) amplitude vibration at
kL (kS) as shown in Fig. 3. Hereafter, in the steady
states, the amplitude of the excitation force kj is set
at 0.001. In Fig. 3, the blue and the green points cor-
respond to the points in Fig. 2.

In order to realize a 2-bit binary counter in two cou-
pled MEMS resonators, we need to control desired
switching behaviors between four coexisting stable
states at a fixed excitation frequency (ω1 = ω2 = 1.02).
The first (second) MEMS resonator is called Res. 1
(Res. 2) that holds the first (second) bit.

3. Switching control method

Based on our experimental set up [14], we construct
a switching control system in a 2-bit binary counter
as shown in Fig. 4. In the 2-bit binary counter, the
output transition of one MEMS resonator triggers the
switching control of the other MEMS resonator. Thus,
the 2-bit binary counter consists of a series connec-
tion of two MEMS resonators. The excitation force of
Res. 2 is given as the input depending on the output
of Res. 1.

According to [11, 14, 18], the control input u1 of
Res. 1, the control input u2 of Res. 2, and the excita-
tion force k2 of Res. 2 are described by

u1 = A2
ref − K1A

2
ave1, (2)

u2 = Kcon2A
2
ave2, (3)

k2 = K2A
2
ave1, (4)
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Figure 3: Hysteretic characteristics with respect to the
excitation amplitude kj at ωj = 1.02. Red lines show
the stable states and aqua line the unstable state.

A2
avej =

A2
j1 + A2

j2 + · · · + A2
jm + · · · + A2

jM

M
, (5)

where j = 1, 2. K1 denotes the feedback gain of Res. 1,
Kcon2 the control gain of Res. 2, K2 the gain of Res. 2,
A2

ref the external reference signal, m natural number,
Ajm the displacement amplitude of the j-th MEMS
resonator at the preceding m period within 1 ≤ m ≤
M , and M the number of terms. Then, A2

avej is the

average of A2
jm of the j-th MEMS resonator. We set

M at 100 for each resonator.
When the state of Res. 1 is switched to the large

(small) amplitude vibration, the external reference sig-
nal A2

ref is set at K1A
L2
ave1 ( K1A

S2
ave1) and the gain K2

of the excitation force is set at KL
2 (KS

2 ). Here AL2
ave1

(AS2
ave1) corresponds to the target of squared averaged

amplitude to the large (small) vibration. In addition,
KL

2 AL2
ave2 and KS

2 AS2
ave2 are adjusted at 0.001.

4. Switching control results and discussions

4.1. Gain dependence

Here we investigate the gain dependence of the
switching control. It has already been explained that
a stable state disappears through the saddle-node bi-
furcation, denoted by kS and kL, in the quasi-static
change as shown in Fig. 3. This subsection focuses on
the capable of the switching control between two stable

Figure 4: Switching control system in coupled MEMS
resonators.
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Figure 5: Switching control from small to large ampli-
tude vibrations.

periodic vibrations when the control input is applied
to Res. 1.

Figures 5(a) and (b) are obtained at the switch-
ing from small amplitude solution at K1 = 0.04 and
at K1 = 0.06, respectively. The switching control
does not work at K1 = 0.04 as shown in Fig. 5(a).
At K1 = 0.04, there still remains the control input
when the vibration converges to the steady state. On
the other hand, the switching control is achieved at
K1 = 0.06 as shown in Fig. 5(b). At K1 = 0.06, the
control input disappears after disappearance of tran-
sients. Note that the sum of the excitation force and
the control input u1 + k1 is less (more) than kL at
K1 = 0.04 (K1 = 0.06). It is concluded that we can
achieve the switching control from small to large am-
plitude states when u1 + k1 exceeds the value around
kL, defined by k

′

L, at the beginning of the control.
Figures 6(a) and (b) are also obtained at the switch-

ing from large amplitude solution at K1 = 0.02 and at
K1 = 0.04, respectively. At K1 = 0.02, there exists the
steady state near the initial state as shown in Fig. 6(a).
Fig. 6(b) shows that the states change from large to
small amplitude solutions. These results suggest that
the switching control from large to small amplitude
states can be realized when u1 + k1 becomes less than
the value around kS, defined by k

′

S, at the onset of the
control.

The switching control results in the state were ob-
tained by using k

′

L and k
′

S. In order to realize the
2-bit binary counter, we need to satisfy requirements
as shown in Tab. 1. There possibly happens a fault of
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Figure 6: Switching control from large to small ampli-
tude vibrations.

the switching control when the state of the resonator
is perturbed by noises at the onset of the control. In
the following simulations, K1 and Kcon2 are fixed at
0.06 and at 0.03.

4.2. Counter operation

Figures 7(a) and (b) show the switching control se-
quence (“00” → “01” → “10” → “11”) in two coupled
MEMS resonators. In these figures, the control in-
put is switched at intervals of 600 periods. Fig. 7(c)
gives a partially magnified view of Fig. 7(b) and shows
the switching control from “0” to “1” in Res. 2. The
states in two resonators must repeat the binary count
sequence with a return to “00”. However, the switch-
ing control from “11” to “00” is not realized in the
proposed switching system. For the switching control
from “11” to “00”, the operation of the coupled MEMS

Table 1: Requirements for 2-bit binary counter.

Count Switching Res. 1 Res. 2
results u1 + k1 u2 + k2

1 “00” → “01” u1 + k1 > k
′

L u2 + k2 < k
′

L

2 “01” → “10” u1 + k1 < k
′

S u2 + k2 > k
′

L

3 “10” → “11” u1 + k1 > k
′

L u2 + k2 > k
′

S

0 “11” → “00” u1 + k1 < k
′

S u2 + k2 < k
′

S
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(a) Result of switching control in Res. 1.
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(b) Result of switching control in Res. 2.

-0.6

-0.3

0.0

0.3

0.6

1200 1400 1600 1800
-0.036

-0.018

0.0

0.018

0.036

x
2

u
2
 
+

 
k
2
,
 
k
L
,
 
k
S

Period

(c) Magnified view of Fig. 7(b)

Figure 7: Switching control from “00” to “11”.

resonators is reset. As a result, the operation of the
2-bit binary counter can be achieved. The switch-
ing from large to small (small to large) amplitude
vibrations was completed after around 300 periods
(350 periods) in Res. 1. In Res. 2, the duration of the
transient state was around 800 periods (700periods)
when the state stayed at the large (small) amplitude
vibrations. It was found that the transition is slow
from small to large amplitude vibrations in Res. 2. It
took around 900 periods until the conversion.

5. Summary

This paper focuses on a 2-bit binary counter in two
coupled MEMS resonators by numerical simulations.
We cleared the requirements of the gain and realized
the switching control sequence (“00” → “01” → “10”
→ “11”) by using the proposed switching control

method. There still remained the reset operation for
the complete operation. Nevertheless, we numerically
showed the implementation of a novel logic system that
consists of electrically coupled nonlinear MEMS res-
onators.
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