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Abstract—Many mission critical devices are increasing with
upcoming 5G network to fulfill a low latency for a real time
network service on smart factory, autonomous vehicle, etc. Dis-
tributed cloud computing system also has a key role to execute the
various mobile devices, because, an edge computing is the nearest
from the mobile devices to provide low latency and computation
energy consumption. In this paper, we consider the autonomous
vehicles with video live streaming services. Especially, the vehicles
require a low transmission delay as within 10 ms. To reduce
a latency with low energy consumption, we propose a service
chaining offloading decision with a deep reinforcement learning.
We split tasks of the vehicle per service function blocks which
have their own role. So it can do partial offloading and user
association in a On-Device Edge of the vehicle and in the SBS at
the same time . We can get results that service chaining offloading
decision gives more optimal energy consumption with low-latency
to autonomous vehicle users.

Index Terms—service chaining, offloading decision, on-device
edge, autonomous vehicle, deep reinforcement learning

I. INTRODUCTION

With upcoming 5G network era, a edge computing has a

key role to give users available resources especially to the

delay-intensive and computation-constraint applications. The

edge computing located at the nearest from mobile users can

address various network requirements. Among them, mission-

critical devices as smart factories, smart cities and autonomous

vehicles require low energy based ultra-low delay and high

reliability services[1][2]. In particular, autonomous vehicles

need to process massive amounts of data in real time, from

video streaming, voice and text to object recognition, mileage

determination, road view, and route planning[3]. Thus, various

offloading methods are being studied to solve the latency and

information reliability problems that occur at this time.There

are several researches related to the offloading methods for

autonomous vehicle system with edge computing model[3][4].

First, in paper [5], for efficient task offloading, they research

a fog network based car offloading that divides computational

tasks to obtain optimal resource efficiency while predicting

car movement to reduce offloading delay. At this time, a

model-based reinforcement learning algorithm was applied to
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reduce the offload delay time by predicting the movement

of the vehicle. Also in paper [6], they proposed a dynamic

task offloading decision method for flexible management of

sub-tasks occurring between automobile and mobile edge

computing. In addition, they proposed a method for dis-

tributing the transmission queue and computational density of

each vehicle by optimizing the allocation of computational

resources for mobile edge computing.However, in the case of

the papers aforementioned above, the requirements of each

function blocks such as data collection, preprocessing, and

object detection offloaded from an autonomous vehicle to

an edge server are not considered. Therefore, we propose a

method of offloading decision to an autonomous vehicle or

and edge server according to the network resource and energy

of each function blocks as a service chain blocks in this paper.

To be more specific, the key contributions of our work are as

follows:

• We consider service chain blocks which are divided by

each functions when users transmit their own tasks on

applications to the local edge computing or the small base

station(SBS) server.

• We propose an optimal offloading decision way of the

service chain blocks on the autonomous vehicle. Service

chain blocks are composed of 6 function blocks: data col-

lection, preprocessing, making clusters with user features,

cache decision, prediction of the next preferences, and

rendered video. When executing the applications, they

can select how far to work locally on the On-Device Edge

as a EdgeAI and how far to offload to the SBS server.

• We apply a deep reinforcement learning method on our

proposed system model, especially Actor Critic algorithm

which provide multi-agent system.

II. SYSTEM MODEL

We consider the distributed multiple mobile edge computing

system with Deep Learning services to provide an optimal

task management in Fig.1. We study that each autonomous

vehicles have their own EdgeAI named as the On-Device Edge

locally. They can select a place to offload their tasks in the

local or the offloading to SBS. In this case, we assume SBS

has their own edge computing to calculate resources from the

vehicles. It only takes the vehicles located within a boundary



Fig. 1. Network System Model

of the cell. We consider a set of the autonomous vehicles

n = {1, 2, ..., N} associated with a set of the On-Device Edge

i = {1, 2, ..., I}. Also, SBS servers are composed of a set

j = {1, 2, ..., J} and we consider a MBS as M0. The vehicle

i chooses the On-Device Edge or SBS/MBS to offload its tasks

to reduce delay and computation cost. In this paper, we aim

to get a optimal solution for low latency and computation cost

through a way of the service chaining offloading decision with

the On-Device Edge system.

A. Network Model

The SBS has limited resources to compute whole process of

the vehicles. The vehicles n send their tasks to the On-Device

Edges i locally. However, when the On-Device Edge is full,

then the vehicle should choose offloading way to the SBS or

MBS. We consider a partial offloading case also. Thus, in the

partial offloading, the vehicle decides how to split its tasks and

where to send them after checking available resources in the

On-Device Edge, the SBS, and MBS. Here, MBS is only one

and it has a same role as the cloud network. Several vehicles

try to transmit their resources to the SBS at the same time in

the cell. Thus, the offloading scenario has two parts: by the

on-device edge and by the SBS. Furthermore, we consider user

association with an on-device edge and a base station where

xi,j denotes the association variable as follow

xn,j =

{
1, if n∈ N associated with j ∈ J

0, otherwise, execute locally
(1)

Each base stations j have different communication and compu-

tation resources. Thus, when selecting SBS servers to offload,

if it can not execute locally, we should consider a computation

requirement of the vehicles within their delay constraints.

B. Communication Model

In our work, the On-Device Edge has a top priority to

solve tasks of autonomous vehicles. So all vehicles calculate

their tasks on the Edges locally. When there are no available

resources, then the vehicle offloads the tasks to the SBS. In

addition, there is no interference between the On-Device Edges

but only among the SBS servers. So we just consider inter-cell

Fig. 2. Service Chain Blocks on the Autonomous Vehicle

interference between cells. It is the orthogonal communication

from the vehicle to the Edge and to the SBS. The channel

power gain Gni between the vehicle n ∈ N and the SBS

i ∈ I . The transmission uplink data rate of the vehicle is as

follow

Rni =
Wi∑N

n=1 xn,i

log2(1 + λn,i) (2)

where Wi is the bandwidth of the On-Device Edge and λn,i

denotes the signal to interference with noise ratio of the uplink.

Thus when the autonomous vehicles n in the autonomous

vehicles are associated with the same server for offloading,

then it should take interference and low data rate.

Rnj =
Wj∑N

n=1 xn,j

log2(1 + λn,j) (3)

Similarly with (2), when the autonomous vehicles are with

the SBS server, then we can get above (3). However, in this

case, λn,j = PnGn,j/N0. Pn means the transmission power of

the On-Device Edges, and N0 denotes the basic noise power.

Here, we do not consider a downlink data rate from the SBS

server, because during a downlink, the computation rate is too

little to be ignored in the whole process.

C. Computation Model

There are computation tasks related to a energy con-

sumption and a processing time which is computational and

logically independent. An application of autonomous vehicle

n is composed of service chain blocks θ as shown in fig.

2. We represents θth computation serivce chain blocks as

T θ
n = {dθn, cθn, tmax

n }, n ∈ N . Here, dθn is the input data size

of θth service chain blocks and cθn shows the number of CPU

cycles to compute one bit of task T θ
n . Also, tmax

n denotes the

maximum latency when the computation tasks are required.

Each computation tasks can be split into several service chain

blocks to accomplish more optimal computation offloading

as seen in Fig. 2. Thus, now we introduce the computation

offloading process for the task T θ
n .

1) Local Computing on the On-Device Edge: For local

computing, task splits, dθn − dθni are executed locally on the

On-Device Edge i. We represent fθ
n as CPU cycles per second

when processing service chain blocks θ. The computation time

HLocal
ni (θ) of task T θ

n is as

HLocal
ni (θ) =

(dθn − dθni)c
θ
n

fθ
n

(4)



Fig. 3. Optimal Process for the Device and the Edge

Following the equation (4), we can get the energy con-

sumption of each CPU cycle is (fθ
n)

2. We denotes the energy

consumption for task T θ
n by ELocal

n (θ) as follow

ELocal
ni (θ) = (dθn − dθni)c

θ
n(f

θ
n)

2 (5)

2) Offloading to the SBS server: The autonomous vehicle

n offloads a part of task dθnj to the SBS server j. In general,

dθnj divide into two parts: d
′θ
nj and dθnj − d

′θ
nj depicted in

Fig. 3. fθ
nj shows the computation resources of SBS server j,

allocated to service chain blocks θ for the vehicle n. HSBS
nj (θ)

denotes the execution time of task T θ
n for the vehicle n as

HSBS
nj (θ) =

dθnj
Rnj

+
(dθnj − d

′θ
nj)c

θ
n

fθ
nj

(6)

With the equation (5), the energy consumption ESBS
nj (θ) is

given by

ESBS
nj (θ) =

Pnd
θ
nj

Rnj
+ (dθnj − d

′θ
nj)c

θ
nej (7)

where ej shows the energy consumption per CPU cycle of

SBS. In this case, the first term represents the transmission

energy consumption to offload Pnd
θ
nj of task θ by wireless

channel. The second term is about the computation energy

consumption of dθnj − d
′θ
nj processed by SBS server.

III. PROBLEM FORMULATION

We formulate the overall problem formulation for the com-

putation offloading and user association. First, the application

of the vehicle n is composed of Θ service chain blocks which

have a sequential dependency. Each blocks are processed

locally on the On-Device Edge and at the SBS concurrently.

Thus, the overall time of the application is as

HTotal
n =

Θ∑
θ=1

max(
N∑

n=0

xn,jT
Local
ni ,

N∑
n=1

xn,jT
SBS
nj ) (8)

Moreover, the energy consumption of service chain blocks θ
is ELocal

ni (θ)+ESBS
nj (θ). Thus, overall energy consumption to

process the application considering with user association is as

ETotal
n =

N∑
n=0

xn,jE
Local
ni (θ) +

N∑
n=1

xn,jE
SBS
nj (θ) (9)

The objective is to accomplish the optimal service chaining

offloading decision in the vehicles with the On-Device Edge.

We can define the optimization problem with partial offloading

and user association as follow:

minimize
fθ
n,d

θ
nj ,c

θ
n

Φ
(
HTotal

n , ETotal
n

)

=
N∑

n=0

⎛
⎝ω0

J∑
j=1

(
(1− xn,j)

(
ELocal

n

HLocal
n

))

+ ω
J∑

j=1

(
xn,j

(
ESBS

n

HSBS
n

))

subject to 0 ≤ ω0, ω ≤ 1

fθ
n ≥ 0, ∀n, j, θ ≥ 0

dθnj ≥ 0, ∀n, j, θ ≥ 0

cθn ≥ 0, ∀n, j, θ ≥ 0

HLocal
n , HSBS

n ≥ 0, ∀n ≥ 0

ELocal
n , HSBS

n ≥ 0, ∀n ≥ 0

(10)

IV. DEEP REINFORCEMENT LEARNING BASED SERVICE

CHAINING OFFLOADING DECISION

Here, we check available resources on the On-Device Edge

and the SBS to decide whether to do a partial offloading

based on equation (6) and (7). As Fig. 2, the vehicle has 6

service chain blocks: (1) Data Collection, (2) Preprocessing,

(3) Make Clustering with User Feature, (4) Cache Decision,

(5) Predict User’s Next Preference, and (6) Rendered Video.

We consider the a delay-intensive live video application in the

vehicle. However, if whole service blocks execute on the On-

Device Edge or on the SBS, then it occur a network overhead

problem. Thus we care about the partial offloading decision

way with Actor Critic to check an available resource and then

execute the service chain block in Fig. 3.

1) State(Sn) : State is composed of two parts: an avail-

able computation energy ETotal
n and transmission delay time

HTotal
n following problem (8) and (9). Thus, we can explicit

Sn = (ETotal
n , HTotal

n ).

2) Action(An) : Action as a goal of our work is a optimal

value when Reward is a minimum with State Sn. So, An

denotes πn (An|Sn) which is a decision value to get a service

chaining offloading for autonomous vehicle n with the On-

Device Edge i and with the SBS server j.



Fig. 4. Checking whether proposed method work well or not

3) Reward(Rn) : As explained by the problem (10), a

optimal reward value is a minimum reward Rn given An

during many episodes.

Algorithm 1 shows the process of service chaining offload-

ing decision, πn (An|Sn)
∗

using Actor Critic.

Algorithm 1 Service Chain Blocks Offloading Decision pro-

cess with Actor Critic

0: for Till optimal πn (An|Sn)
∗ do

0: for ∀n ∈ N do
0: Action: An πn (An|Sn)
0: Get: on = 〈Sn, An, Rn, Sn+1〉
0: Assess: A (θn) with Eq. 10

0: Policy: θ ← θ +AnQω (S,A)∇θ lnπn (A|S)
0: Update: θn = θn + Policy
0: ActionValue: δt ← rt + γQ (S,A)∇θ ∈ πθ (A,S)
0: Update: δt = δt+ActionValue
0: end for
0: Update: A ← An+1andS ← Sn+1

0: Append: on ∈ O
1: return πn (An|Sn)

∗
, O

V. EVALUATION

We consider 5 autonomous vehicles with 6 service chain

blocks and the edge computing by Kubernetes. We use a

movie-lens dataset for mobile user’s applications. Also, on

each Edge, we input a number of mobile users uniform

distribution random variable. Fig.4 represents the proposed

algorithm works well or not. During 300 epochs, our proposal

works well on increasing of learning time almost 9000 times.

We use the same learning rate, 0.001, on whole On-Device

Edges. Based on Fig. 4, we can check our joint communication

and computation model with Actor Critic model. In Fig.5,

comparing with the general case, we can check our proposed

method little bit fast to offload tasks during 100 epochs.

VI. CONCLUSION

Here, we get the optimal service chaining offloading de-

cision on the autonomous driving system with Actor Critic

Fig. 5. Comparison the proposed model with general model during 100 epochs

model. However, we only consider the video live streaming

service. So some limitations are to calculate various network

requirements concurrently from the vehicle such as sensors,

camera, voice, etc. We did not consider the waiting time when

the vehicle selects the task offloading or the task transmission

to the On-Device Edge or the SBS. Also, we did not use

real datasets on the evaluation. In future, we will consider

various applications in the vehicles. We should consider a

model compression on each service chain blocks to reduce

a utility cost to propose a framework of the EdgeAI system.
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