
An autonomous Mobile Robot System based on
Serverless Computing and Edge Computing

1st Tri Thong Tran
Dept. of Information Management

National Taiwan University
Taipei, Taiwan(R.O.C)

r08725053@ntu.edu.tw

2nd Yu-Chen Zhang
Dept. of Information Management

Fu Jen Catholic University
New Taipei, Taiwan(R.O.C)

404401258@mail.fju.edu.tw

3rd Wei-Tung Liao
Dept. of Information Management

Fu Jen Catholic University
New Taipei, Taiwan(R.O.C)

404402111@mail.fju.edu.tw

4th Yu-Jen Lin
Dept. of Information Management

Fu Jen Catholic University
New Taipei, Taiwan(R.O.C)

404401284@mail.fju.edu.tw

5th Ming-Chia Li
Dept. of Information Management

Fu Jen Catholic University
New Taipei, Taiwan(R.O.C)

404401612@mail.fju.edu.tw

6th Huai-Sheng Huang
Dept. of Information Management

Fu Jen Catholic University
New Taipei, Taiwan(R.O.C)

hshuang@im.fju.edu.tw

Abstract—Strengthen by Artificial Intelligence (AI) and com-
plexly integrated sensors, an autonomous mobile robot (AMR)
is extensively applied in coping with various human resources
tasks in indoor office environments. However, implementing an
AMR system from scratch needs a strong Electric Engineer
background due to the complexity of robot-controlling. Besides,
Communication between robot-server, sensor, and client-service
also increases the difficulty and time-cost in AMR developing. In
this paper, the AMR system we proposed aims to be implemented
by people without a EE background, and we will achieve this by
employing Robot Operating System. Besides, the AMR system
should work independently but still capable of responding to
human requests. We will demonstrate a serverless could structure
that includes the client-side service and integrate the edge-
computing, which in charge of the immediacy-demanding job.

Index Terms—autonomous mobile robot, AMR, cloud comput-
ing, edge computing, serverless

I. INTRODUCTION

Autonomous mobile robot (AMR) [1] is increasingly popu-

lar in industries because of its degree of autonomy. To achieve

high-autonomy, AMR needs to combine numerous-integrated

sensors, such as lidar and 3D depth cameras. However, this

could cause customizing a robot system to suit every sen-

sor as time-consuming and inflexible. Robot Operating Sys-

tem(ROS), a robotic middleware, came to address the problem

by modularizing features or sensors, allows developers to im-

plement the opensource module and deal with message passing

more easily with its broadcasting design. In the meantime, we

want to expand ROS-based robots’ modularity and flexibility

by integrating ROS robot with cloud service.

The whole robot application would be more easily switch

to different services and be more efficient since cloud service

can cover computing jobs, reduce the edge device’s loading

and power consumption [2]. So the robot could focus on the

job such as mapping, navigation, and sending the necessary

data to the cloud IoT service. Then, the cloud IoT service

Fig. 1. System Architecture.

will trigger other services to process data without running a

server standby. By doing so, the whole structure would be

more flexible since the developer can decide which services



Fig. 2. AMR implementation.

can be triggered. The decoupling of work would make develop

features and issue tracking more accessible.

Fig. 1 shows our system architecture. This paper will

demonstrate an AMR system that comprises three parts: an

AMR with NVIDIA Jetson TX2 module for edge computing, a

serverless architecture based on Amazon Web Services (AWS)

[3] for cloud computing, and an user interface developed using

React Native [17].

As we assume the AMR system is designed for indoor-

delivering service, we will take sending documents as our

mission. Additionally, the AMR system was equipped with

a face-recognizing feature to check the sender and receiver

identification. According to our serverless system, it can

cache all requests and then trigger a chain of cloud-based

micro-services to notify AMRs. In the meantime, a power-

efficient module based on the edge computing can handle the

AMR working during an unstable or disconnected network

connection.

II. SYSTEM DESCRIPTION

A. Autonomous Mobile Robot Implementation

In Fig. 2, Turtlebot3 [4] is utilized to build fundamental

AMR, which provides Open-source Control Module for ROS

(OpenCR) [5] and DYNAMIXEL [6], a smart actuator system

for robot engine. Considering the need for edge computing,

such as obstacle avoidance, NVIDIA Jetson TX2 module [7]

is utilized to serve as edge computing device. We add a

360-degree lidar module for surrounding detection to make

advances to environment detection. We also use a monocular

webcam for human face recognition and a 3D depth camera,

Intel RealSense Depth Camera D435 [8], for additional envi-

ronmental detection. In the aspect of robot software, ROS is

used, which provides packages such as Simultaneous Local-

ization And Mapping (SLAM), and navigation. We install the

software development kit (SDK) from AWS Greengrass [9],

which provides a connection with other AWS IoT services.

B. Serverless Architecture

Fig. 3. shows the serverless architecture based on AWS.

The AWS Greengrass is used to manage devices and deploy

Lambda function, a collection of code, to the AMR. Also,

vital data including AMR status can be sent back to AWS

IoT Core [10] through AWS Greengrass. Once the data has

been received, AWS IoT can trigger corresponding services

by executing a function created on AWS Lambda [11] such

as access to Amazon DynamoDB [12], an efficient NoSQL

database, to store user’s requests and position coordinate.

On the other side, AWS SageMaker [13] is used to train

model for face recognition based on the edge computing

to identify sender and receiver. Training data such as facial

images of users are stored in Amazon S3 [14], which provide

reliable object storage. Facial images were regularly retrieved

by AWS Lambda, which triggered AWS SageMaker to train

facial model recursively. The deployment of the new-trained

model on AMR can be done automatically through AWS

Greengrass during the wired network is attached (e.g., during

AMR is charging its power) or wireless network is reliable.

C. User Interface

Fig. 4. shows the user interface. In response to the user inter-

face such as App, the Amazon Cognito [15] is used to federate

with the three-party account such as Google or Facebook. In

the aspect of data storage, Amazon DynamoDB is adopted.

For reliability, user’s requests should be temporarily stored in

Amazon SQS [16] first in case of Input /Output Operations

Per Second (IOPS) overloading.

Considering to be a cross-platform mobile application,

React Native [17] was chosen to develop the user interface.

For Interacting with AWS services, such as uploading images

to Amazon S3 could be done through AWS SDK.

D. Demonstration

Fig. 5. shows the demo demonstration. Users should upload

profile information such as facial image on register page at

the first time. Afterwards, once a delivery request has been

made, the AMR would start its mission, sending the package to

receiver’s position and then identify receiver’s face. Once the

identification had been confirmed, the mission was completed.

III. CONCLUSION

To sum up, it is essential to take advantage of edge com-

puting and cloud services to design a well-developed AMR

system. Cloud computing can reduce the power consumption

of AMR and be more easily integrated AMR with other

IoT devices. Besides, AMR should make use of the increas-

ingly powerful edge computing device, which can help AMR



Fig. 3. Serverless Architecture.

quickly respond to any undesirable situation. With the help

of cloud computing and edge computing, we can develop a

powerful AMR elegantly and swiftly.

As 5G technologies bolster the IoT industry, people are

seeking what the best approach to managing and developing

IoT devices is? Here, our implementation serves as a feasible

solution we tried. We hope it can offer an insightful view about

developing AMR solutions.

ACKNOWLEDGMENT

The research is co-sponsored by Ministry of Science and

Technology (MOST), grants 109-2221-E-030-014-MY3.

REFERENCES

[1] Robotics Online Marketing Team, “The Latest Technological Innova-
tions in Autonomous Mobile Robots”, Robotics Online Blog, May 2018.

[2] Ken Goldberg, “Cloud Robotics and Automation”, Fall 2018.
[3] Amazon Web Services, “https://aws.amazon.com”.
[4] Turtlebot3, “http://www.robotis.us/turtlebot-3”.
[5] OpenCR: Open Source Control Module for ROS,

“https://robots.ros.org/opencr/”.
[6] DYNAMIXEL, “http://www.robotis.us/dynamixel/”.
[7] NVIDIA, “Jetson TX2 Module”, https://developer.nvidia.com/embedded/jetson-

tx2.
[8] Intel, “RealSens Depth Camera D435”,

https://www.intelrealsense.com/depth-camera-d435.
[9] AWS, “Greengrass”, https://aws.amazon.com/greengrass.

[10] AWS, “IoT Core”, https://aws.amazon.com/iot-core.
[11] AWS, “Lambda”, https://aws.amazon.com/lambda.
[12] AWS, “Amazon DynamoDB”, https://aws.amazon.com/dynamodb.
[13] AWS, “SageMaker”, https://aws.amazon.com/sagemaker.
[14] AWS, “Amazon S3”, https://aws.amazon.com/s3.
[15] AWS, “Amazon Cognito”, https://aws.amazon.com/cognito.
[16] AWS, “Amazon SQS”, https://aws.amazon.com/sqs.
[17] React Native, “https://facebook.github.io/react-native”.

Fig. 4. App Interface Screenshot.



Fig. 5. Demonstration.


