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Abstract— Bitcoin users are guaranteed to be anonymous,
increasing the number of cryptocurrency trading related to
crimes and fraudulent activities. While most studies about
detecting illegal transactions try to distinguish trading pat-
terns and classify them from legitimate ones, classification
performance is poor since the class distributions of transaction
data are highly imbalanced. In general, the Synthetic Minority
Over-sampling TEchnique (SMOTE) is used to deal with class-
imbalanced data, but SMOTE has a problem that it does not
fully represent the diversity of the data. In this paper, we
introduce another oversampling technique using Generative
Adversarial Networks (GAN) to generate artificial training data
for classification model. In order to verify similarity between
artificial data and the actual one, oversampled dataset is
evaluated with a classification model using XGBoost algorithm.
We show classification performance is improved on average with
synthetic data generated by both SMOTE and well-designed
GAN model.

Index Terms— Blockchain, Imbalanced data, Oversampling,
Illegal detection, Classification, SMOTE, GAN

I. INTRODUCTION

Cryptocurrency is a digital asset traded on blockchain net-

works using encrypted public keys, easily proving ownership

with hash functions. Blockchain, the core technology of cryp-

tocurrencies, uses distributed ledgers to disclose all trans-

actions and the account information between individuals.

However, most cryptocurrencies on public blockchains are

difficult to identify users to ensure the anonymity of whole

system [1]. Identifying individuals in blockchain network is

possible only with the address of the account, which anyone

can create and own freely. For this reason, bitcoin guarantees

strong privacy. Therefore, someone can trade bitcoin with

malicious purpose and there could be transactions associated

with illegal activity. According to a survey conducted by

Sean, around $35 billion illegal activities occur annually

in the U.S. and Europe for weapons, drugs, and money

laundering [2]. Therefore, detection and classification of

illegal transactions from legitimate ones are essential for

the blockchain technology to develop into a next-generation

financial system.

A classification model can predict a class for new input

data by analyzing patterns in existing data sets. Generally,

classification models are developed through machine learn-

ing, where the training datasets are ideally well-balanced.

But for most of the data actually collected, the classes are

imbalanced. Imbalanced data typically refers to a training

dataset where the number of observations per class is not

equally distributed. If there are a number of data/observations

for one class, it is called as the majority class, otherwise

as minority class. In the case of bitcoin transaction, the

dataset is also imbalanced due to the difficulty of securing

illegal transactions. Since there is no explicit feature in the

block record to express irregular transaction pattern, we

collect transaction history with crawling system in Darknet

[3]. A common way to collect illegal transaction data is

to collect the hash value of transactions made on unofficial

and prohibited trading sites (e.g., Silkroad in Darknet) [4].

A Darknet is an overlay network within the Internet that

can only be accessed with specific software, configurations,

or authorization. In 2017, bitcoin worth $770 million were

traded through Darknet and most of them are linked to

banned drugs and gun trades. Despite numerous criminal

transactions, we cannot collect all illegal transactions because

any Darknet operator including Silkroad does not provide

trading log. Thus, the number of illegal transactions is less

than the number of legitimate transactions traded on official

exchanges.

Synthetic Minority Over-sampling TEchnique(SMOTE),

a common resampling method, is used to address the im-

balanced dataset which is degrading model performance

[5]. But SMOTE is not suitable for high-dimensional data

due to the problem of overfitting. Since SMOTE generates

data regardless of the data distance, it could replicate the

same instances over and over. Accordingly, we also propose

Generative Adversarial Network (GAN) as a solution to solve

the imbalanced data problem used in detecting bitcoin illegal

transactions [6].

The rest of the paper is organized as follows. In Section II

we briefly explain Bitcoin transaction analysis and theoretical

background about oversampling and GAN. Then, in Section

III we present experiments based on GAN models and

SMOTE. We point out the limitations of dataset and models

and include descriptions of additional experiments that have

improved them. In Section IV, we summarize the experiment

results and discuss possible future research.

II. RELATED WORK

A. Bitcoin transaction analysis

[7, 8] proposed a classification model to classify trans-

actions related to crime and fraudulent activities. They



used clustering algorithm or machine learning to determine

the characteristics of illegal transactions and identify users

performing similar actions. [9] extracted 12 feature coeffi-

cients for anomaly detection in bitcoin network using an

unsupervised learning method. Previous studies have only

focused on classification method or model architecture, not

on dataset. The main purpose of this study is to investigate

the improvements in classification model performance while

solving the imbalance in dataset.

B. Oversampling

Haixiang explained that Random Oversampling (ROS),

Adaptive Synthetic Sampling (ADASYN) and SMOTE are

used as representative oversampling techniques [10]. ROS is

a method of randomly replicating minority class data sam-

ples and SMOTE selects K-nearest neighborhood between

data samples to create new data samples following those

points. ADASYN is an advanced technique in SMOTE that

uses density distribution to create more realistic samples to

prevent the distorted distribution of data created by SMOTE.

We note there are several attempts [11–15] using GAN-

based model to oversampling for class-imbalanced dataset

classification. GAN generates new data instances based on

the existing data, and is typically made up of two deep

networks: generator and discriminator. The purpose of the

generator is to give random noise to the artificial data so that

the data is similar to the actual data distribution, and the

discriminator is to distinguish between the data produced

by the generator and the actual data. The two models

will compete in learning to generate more realistic data.

conditional-GAN(CGAN) is an extended model of GAN,

adding additional space such as class information to the data

space [16]. For example, if you want to create a specific

number of values in MNIST dataset as CGAN, you can

learn the model by adding a label of that number as an

additional space. This extra information y is fed into both

the discriminator and the generator as additional input layer.

In basic GAN, KL divergence or JS divergence was mainly

used to measure the distance between data distributions,

both of which had a problem with mode collapse. Mode
collapse is that the generation model produce only certain

values of the data (e.g., an image of MNIST labeling 2).

To address this, Arjovski used Earth-Mover(EM) loss to

understand the probability distribution of the actual data. In

[17], Wasserstein-GAN (WGAN) was proposed to minimize

the EM distance. WGAN, sensitive to the balance between

generators and separators, can solve problems that may arise

during learning. WCGAN is a conditional version of WGAN.

III. EXPERIMENT

In this section, we explain how we collected and pre-

processed bitcoin transaction data. Then, we present over-

sampling techniques and validation method of synthetic data.

A. Data Preparation

Since Silkroad was closed in November 2014 (when

bitcoin block height was about 330,000), the transactions in

database were traded between 290,000 and 300,000 blocks,

with 200,000 legitimate transactions and 10,000 illegal trans-

actions being sampled. At this time, legitimate transactions

were labeled as zero, otherwise as one. We gathered on-

chain data such as bitcoin transmission volume, lifetime,

fee and sibling number to extract features of the bitcoin

transactions. We extracted the total list of extracted 62

features from bitcoin node. However, the data in high-

dimensional space could cause problem like overfitting when

training a classification model. Therefore, we used Principal

Component Analysis (PCA) to transform the data with a total

of 16 main component vectors including class label [18].

PCA is a data preprocessing method, usually applied to the

feature collections to handle the curse of dimensionality by

converting high-dimensional data into low-dimensional data.

B. Data Generation

We implement SMOTE with imblearn 1 python library and

generate artificial data. We also developed GAN architectures

implemented in Python using popular library like Keras

and a Tensorflow-backend [19, 20]. Although GAN in image

processing generally uses convolutional network, our dataset

uses densely connected layers, which are connected to every

input and output of the layer, due to the lack of any spatial

structure among variables. Firstly, we built vanilla-GAN

composed of generator network and discriminator network,

using cross-entropy loss to train network. Secondly, we

added class labels to the network layer to condition on

both generator and discriminator (CGAN). Thirdly, we used

the Wasserstein distance metrics to train network and lastly

added class labels (WGAN/WCGAN). Each GAN models

trained 5000 rounds and then generated illegal transactions.

Fig. 1: Difference between critic loss in WGAN and WCGAN

In WGAN and WCGAN architectures, the discriminator

calculates Wasserstein (EM) distance to learn data distribu-

tion and be optimized to tell artificial data. If the network

is ideally learned, the EM distance between artificial and

actual illegal data will be measured close to zero. It means

that the critic network loss will not be lower, then no matter

how further training may not be helpful. From the critic loss

in Fig. 1, however, there still seems to be room for further

research in both WGAN and WCGAN.

1https://imbalanced-learn.readthedocs.io/en/stable/



We generated data when each model is best iteration with

the highest classification score. To investigate the distribution

of synthetic and actual data, we visualized them in 2 K-

Means classes, Class 1 for legitimate transactions and Class

2 for illegal transactions. We plotted with 2 dimensions (V2,

V12 transformed by PCA) that determine which features

had a significant impact on classification using Extreme

Gradient Boosting (XGBoost) [22]. In other words, XGBoost

algorithm calculates and scores importance of input features

based on how useful they are for classification. Fig. 2 illus-

trates the comparison of synthetic data with GAN models.

Fig. 2: Comparison of Generated Data with GAN models

C. Evaluation

Synthetic data is produced similar to the actual data in the

initial learning phase in vanilla GAN. As the learning phase

began to exceed 1000 steps, however, it began to converge

into a single point which is not optimal. This seems to be

due to mode collapse, where learning converges on a non-

optimal sample distribution. In the case of CGAN, the class

values each converge to a specific distribution. CGAN does a

little better produce than GAN but the mode collapse sets in

the end. On the other hand, in WGAN and WCGAN which

analyze the distribution between data using EM distance,

it was found that all of them did not show mode collapse

regardless of class information.

For training set, we used 70% of the legitimate data

(140,000 cases) and 20% of the illegal data (2,000 cases).

Then we added different amounts of real or generated

transaction data to this training set, up to 7,000 cases (70%

of the fraud data). For the test set, we used the rest 30%

of the legitimate cases (60,000 cases) and illegal (3,000

cases). We tried adding generated data from an untrained

GAN to test the performance improvement of random noise.

To mitigate overfitting, the results are reported under 5-fold

cross-validation. From our tests, it appears that our best

architecture was WCGAN at 5000 step. Thus, we compare

SMOTE and WCGAN using XGBoost classification scores.

The evaluation of the XGBoost was examined quantitatively

with data generated by the untrained-WCGAN model, the

trained-WCGAN and SMOTE.

TABLE I: Peformance of XGBoost classification at Best Iteration

auc precision recall roc_auc

Untrained 0.9282 1.0 0.2826 0.9833
WCGAN 0.9280 0.9978 0.2808 0.9843
SMOTE 0.9291 0.9989 0.2919 0.9848

Fig. 3: Effects of Additional Data on Classification

As shown in Table I, classification performance metrics

show recall value is extraordinarily lower than other met-

rics. Recall, also known as sensitivity in statistics, is the

fraction of illegal transaction samples accurately identified

in the test set. In other words, recall value is calculated

as the percentage of synthetic data by XGBoost algorithm

that predicts illegal transaction. If the model trained data

distribution properly(i.e., the value of recall is increased), it

means that the synthetic data is similar to the actual data. Fig.

3 shows the change in the value of recall as the generated

data is added.

In the case of untrained WCGAN, there was not much

change in recall value while the synthetic data was added.

This means that the data only generated by random noise

is not similar to the actual data. This is reasonable and

an expected result. Unfortuately, no significant difference in

trained WCGAN was compared with untrained WCGAN.

With the addition of trained WCGAN data in classification

model, the performance has fallen further. SMOTE shows

the highest recall value in best iteration and looks relatively

good, but it does not show noticeable performance improve-

ments. In summary, the overall performance of the data

generation model (random noise, WCGAN) and SMOTE was

not different from around 0.3 baseline.

There are two main reasons why data generation models

are not performing well in previous experiments. The first

problem is the fundamental limitation of GAN architecture.

In the case of GAN architecture, it is highly likely that the

parameters of the model will oscillate and destabilized during

learning. For instance, if the discriminator gets too suc-

cessful, the generator gradient vanishes and learns nothing.

Thus, the parameters will not converge on optimal values.

Especially, GAN is difficult to identify decision variables



in the learning process due to a black-box method such as

neural network. For this reason, we expect that there is a

possibility of improvement in the loss of WGAN/WCGAN

like Fig. 1. Secondly, the quality of bitcoin transaction

dataset is a problem. We can can readily spot a lot of

overlap and the distribution is clearly concentrated on certain

values. This seems to be due to the fact that the dataset was

composed using only on-chain data. On-chain data refer to

transaction information which occur on the blockchain and

remain dependent on the state of the blockchain for their

validity. The problem with on-chain data is that key infor-

mation about the transaction is missing, such as market price

and where the trading occurred. To address this problem, off-

chain data such as the exchange or price of each transaction

is necessarily required.

We provide an additional experiment using DRAGAN

and resampled training set [23]. DRAGAN was used

to solve training difficulty and low-performance of basic

GAN/WGAN architecture. DRAGAN enables faster train-

ing, achieves improved stability with fewer mode collapses,

and leads to generator networks with better modeling per-

formance across a variety of architectures and objective

functions. Furthermore, To reduce dependency on off-chain

data, the scope of transaction blocks has been narrowed

from 295,000 block to 300,000 block( previously, from

290,000 block to 300,000 block). The number of legitimate

transaction decreases from 200,000 to 100,000 and so does

illegal transaction decreases about half. Fig. 4 illustrates the

effects of additional data on classification with resampled

training set in SMOTE and DRAGAN.

Fig. 4: Effects of Additional Data on Classification with Resampled Training Set

Fig. 4 indicate that DRAGAN shows clear improvement

in recall value compared to basic GAN and WGAN ar-

chitecture. In particular, we can check an average perfor-

mance improvement of 10 percent during SMOTE doubles

its minority-class data. In the imbalanced data, we found

that SMOTE shows better performance than GAN-based

frameworks.

IV. CONCLUSION

This study proposed an oversampling method for detecting

bitcoin illegal transaction data. It was expected that data

augmentation in minority class would solve the problem

of imbalanced dataset, thereby improving the performance

of classification model. We showed evidence of improved

classification performance using an oversampling method.
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