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Abstract—Sensing data fusion is one of the most important
technologies in autonomous driving. Its performance depends on
advance communication technology. Cellular-Vehicle to Every-
thing (C-V2X) initially defined as LTE V2X in 3GPP Release
14 is a solution for vehicle communication that includes Vehicle-
to-Infrastructure (V2I), Vehicle-to-person (V2P), and Vehicle-to-
Vehicle (V2V). Although 4G LTE and 5G provides high-speed
transmission, packet loss and delay are still inevitable. Packet
loss and delay affect the safety of autonomous driving, especially
for the judgment of emergency. In this paper, we compare the
accuracy of data fusion under different rate of packet loss and
broadcast frequency on the simulated platform CALAR. And we
propose a skill to improve accuracy. Experiments show that the
proposed skill significantly alleviates the effect of communication
packet loss and delay on the accuracy of V2X data fusion.

Index Terms—V2X communication, Data Fusion, Autonomous

I. INTRODUCTION

Surrounding vehicles’ motion data and traffic information

helps autonomous driving to make better decisions to achieve

comfortable driving and avoid accidents. Sensing data fusion

aggregates all information and integrates accurate environmen-

tal parameters, allowing the autonomous driving system to

complete human-like driving decisions. With the advancement

of wireless communication, computer vision (CV), and sensing

technology, sensing data fusion has become one of the most

important technologies of autonomous driving.

In the field of wireless communications, several countries

just turned on their 5G mobile networks, and some start

development of 6G. The 3GPP releases 14, 15, and 16 [1]–[3]

proposed Vehicle-to-Everything (V2X) to solve the needs of

vehicle communication that include Vehicle-to-Infrastructure

(V2I), Vehicle-to-person (V2P), and Vehicle-to-Vehicle (V2V).

They divided into 3 stages to complete the standardization of

V2X.

Another major vertical focus area in release 16 is intelligent

transportation systems (ITS). ITS provides a range of transport

and traffic-management services, improves traffic safety, and

reduces traffic congestion, fuel consumption and environmen-

tal impacts [8]. Efficient communication between vehicles and

fixed infrastructure, but also between vehicles is the key to

ensure ITS working well. 3GPP TR 38.885 [4] defined 25 use

cases for advanced V2X communications, including vehicle
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platooning and cooperative communication using extended

sensors.

Although 4G LTE and 5G provides high-speed transmission,

low latency, and large bandwidth, packet loss and latency

are still inevitable. Especially for information that has high

demand for real-time, such as emergency or accident warning,

delay or loss of packets will cause the judgment of data

fusion being inaccurate. Lee et al. [9] propose a fusion al-

gorithm which integrates V2X communications, GPS, camera

information, and magnetometer data. It made the driver can

visually see its surrounding vehicles’ driving states. In their

experiment environment, they don’t consider the effect of

loss of packets and delay on V2X. In this work, we point

out the problem of sensing data fusion with packet loss and

delay by implementing an augmented reality (AR) of car

through integrating V2X communications and own vehicle

information. We use simulate V2X data generated by CALAR

simulator [6] to show the impact of packet loss and delay on

data fusion.

The rest of this paper is organized as follows. Section 2

reviews some related work. Section 3 defines our problem

and gives notations which uses in this paper. Our V2X data

fusion scheme is shown in Section 4. Section 5 discusses our

simulation results. Final section concludes this paper.

II. RELATED WORK

Environmental awareness is an important issue for the

safety and comfortable driving of self-driving cars. If we can

correctly detect and classify the objects around the vehicle,

then we can respond appropriately in all possible traffic sce-

narios. Sensing surrounding objects (such as vehicles, people,

dogs, obstacles, etc.) and lane deviation warning are cur-

rently popular application scenarios. The self-driving Bertha

of the Mercedes-Benz research [7] is proposed a multi-sensor

network that combined 4 short-range radars, 3 long-range

radars, and 4 video cameras to more accurately detect traffic

conditions. A prototype of a high-resolution radar sensor is

proposed in [10] , which can measure distance, speed and

angle in an instant.

V2X can improve road traffic safety and improve the

safety and comfort of autonomous driving. A visible light

communication warning system is studied in [13]. Brake lights

of a vehicle can be used to transmit messages for emergency

hard brake to warn the the following vehicle. Sharing sensor



data between vehicles and Road Side Units (RSUs) is studied

in [11]. It can solve the blocking problem of ego perspective

sensors. A V2X communication-centric traffic light controller

system is proposed in [14], which exchanges information on

all vehicles and traffic controlling system to implement a V2X-

integrated traffic light controller system.

Data fusion in self-driving makes integrated utilization

of the information obtained by different sensors and multi-

sources, which avoids the perceptual limitations and uncer-

tainties of a single-source, such that improves the external

perception ability to ensure safe and comfortable driving.

Fusing LIDAR point clouds and camera images is proposed

for road detection [5]. Using multi-sensors (radar, lidar, and

camera) is proposed to detect and classify moving objects

including pedestrian, bike, car, and truck [12]. In this paper,

we implement an AR of car through integrating V2X commu-

nications and own vehicle information to show the effect of

packet loss and delay on the result of data fusion.

III. NOTATION AND PROBLEM DEFINITION

We assume that the user’s car has an RGB-D camera in

the front to identify nearby car objects, information such as

color, type, distance, angle, and license plate will be recorded.

The calculation may be inaccurate due to shooting distance,

shooting angle, weather, and obstructions etc. We also assume

that each car can exchange their car profiles and driving states

(such as speed, emergency braking, intention to turn, etc.) by

V2X communication. Due to privacy protection, some vehicles

may provide incomplete information. And the loss and delay of

packets, some vehicles’ status are not updated instantly. Our

goal is to enhance the car’s video information by mapping

each driving information on surrounding vehicles who are

coveraged by the car’s RGB-D camera. When we receive

several pieces of information from surrounding vehicles, the

challenge is to tag the right information on the right car.

We consider a vehicle x. At time t, it will retrieve its current

speed x.sp(t), location x.loc(t), and orientation x.ori(t). Its

surrounding image at time t is denoted by I(t). We set V (t) =
{v1(t), v2(t), . . .} being the set of all vehicles who identified

in I(t). Each vi(t) associated with the following information.

• vi(t).type: the type of vehicle such as car, bus, truck, etc.

• vi(t).c: the vehicle color which contains 3 parameters

vi(t).c.R, vi(t).c.G, and vi(t).color.B (red, green, and

blue)

• vi(t).lic: the license plate

• vi(t).dist: the distance between x and vi(t)
• vi(t).angle: the angle of vi(t) with respect to x’s camera

view

Through V2X communication, x receives a set of number

of broadcasts B(t) = {b1(t), b2(t), . . .} at time t. Based

on privacy protection, each bi(t) may associates with the

following information.

• bi(t).time: its data generating time

• bi(t).type: the type of vehicle

• bi(t).c: the vehicle color which contains 3 parameters

bi(t).c.R, bi(t).c.G, and bi(t).c.B

• bi(t).lic: the license plate

• bi(t).loc: the location of bi(t)

To ensure that the data from V2X is kept up to date, x
maintains a set of data C = {c1, c2, . . .}. Each ci is associated

the following information.

• ci.time: its update time

• ci.type: the type of vehicle

• ci.c: the vehicle color which contains 3 parameters ci.c.R,

ci.c.G, and ci.c.B
• ci.lic: the license plate

• ci.loc: the location of bi(t)
• ci.dist: the distance between x and this vehicle

• ci.angle: the angle between x and this vehicle

We set d being the maximum tardiness. x confirms each ci
in C regularly. If current time is more than d difference from

ci.time, then x withdraws ci form C. When x receives bi(t) at

time t, it compares bi(t).lic with each cj’s cj .lic. Then there

are 2 cases to be dealt with.

• UPDATE:
1) If bi(t).lic = cj .lic and bi(t).time > cj .time, then

x sets cj .time as bi(t).time, cj .type as bi(t).type,

cj .c as bi(t).c, cj .lic as bj(t).lic, and cj .loc as

bi(t).loc.
2) If bi(t).lic = cj .lic and bi(t).time ≤ cj .time, then

x withdraws this one.

• INSERT:
1) If bi(t).lic �= cj .lic for each cj ∈ C and t −

bi(t).time ≤ d, then x create a new ck in C where

k did not use, and x sets ck.time as bi(t).time,

ck.type as bi(t).type, ck.c as bi(t).c, ck.lic as

bj(t).lic, and ck.loc as bi(t).loc.
2) If bi(t).lic �= cj .lic for each cj ∈ C and t −

bi(t).time > d, then x withdraws this one.

IV. V2X DATA FUSION SCHEME

We assume each vehicle has GPS receiver to provides its

current location and magnetometer to provides its current

speed. Each vehicle broadcasts its driving status (such as

license plate, current location, current speed, etc.) through

V2V communication. To map driving status to the image I(t),
we propose a V2V data fusion scheme in Fig. 2. It consists of

3 modules: (1) Data Preprocessing, (2) Weight Calculation,

and (3) Mapping Decision. Those modules are running on the

vehicle side. The approach by Lee et al. [9] is based on B(t)
and I(t). They don’t consider the effect of loss and delay of

packets. We consider these situations and propose solutions.

Below, we describe the proposed scheme in detail by showing

how the three modules operate in a vehicle at current time t.

A. Data Preprocessing Module

When vehicle x gets the current front image I(t), it calcu-

lates all vehicles’ information identified in I(t) including type,

color, license plate, distance, and angle. All the information

from I(t) is put in V (t) = {v1(t), v2(t), . . .}. And x obtains

its current location x(t).loc from its GPS, and its orientation



Fig. 1. Procedure of data fusion.

x(t).ori from its magnetometer. Note that we set the value of

orientation being 0 if the sensor’s orientation is pointing north.

Then for each ci ∈ C, it updates ci.dist as |x(t).loc− ci.loc|
and ci.angle as arccos |ci.loc.y−x(t).loc.y|

ci.dist
+x(t).ot mod 360.

Note that how x maintain the set C is described in Section 3.

Now that we have the data obtained from the photo analysis

and the data obtained from V2V, the next step we will calculate

the similarity matrix between W (t) and C.

B. Weight Calculation Module

This module is responsible for calculating weight matrix

W (t) = {wvi(t),cj | vi(t) ∈ V (t) and cj ∈ C} by comparing

the similarity between elements vi(t) ∈ V (t) and cj ∈ C. We

first calculate the weight of each element pair and then add

them up. Higher total weight means higher similarity. The dif-

ference from the approach by Lee et al. [9] is that we consider

the effect of loss and delay of packets when we calculate the

weight of distance and angle. At the same time, even if some

vehicles’ V2V packets are not received at the moment, we

still use the latest V2V packets to calculate its weight. For

each cj ∈ C, we set αj = (
d−current time+cj .time

d )2 being the

weight of the effect of loss or delay of packet, where d is the

time to measure the data freshness. According to data types

of V (t) and C, we define the following 5 weights.

1) Weight of type: We set the weight of type

wtype(vi(t), cj) = 1 if vi(t).type = cj .type; otherwise,

wtype(vi(t), cj) = 0.

2) Weight of color: We set wcolor(vi(t), cj) =
MRGB−dcolor

MRGB
where MRGB =

√
3× 2552 is the

maximum difference of RGB, and dcolor is the

difference of vi(t).c and cj .c in R, G, and B parameters.

3) Weight of license plate: We compare the license plate

numbers (or characters) between vi(t).lic and cj .lic one

by one. Let slic denote the same number of words

between them, and let lenlic being the number of

characters of license plate. We set the weight of license

plate wlic(vi(t), cj) =
slic

lenlic
.

4) Weight of distance: We set wdist(vi(t), c.j) = αj ×
Mdist−min{Mdist,|vi(t).dist−cj .dist|}

Mdist
, where Mdist is the

maximum distance between any GPS measure and any

camera measure.

5) Weight of angle: We set wangle(vi(t), cj) = αj ×
360−|vi(t).angle−cj .angle|

360 .

Then we sum up all weights to derive wvi(t),cj (t) =
wtype(vi(t), cj) + wcolor(vi(t), cj) + wlic(vi(t), cj) +
wdist(vi(t), cj) + wangle(vi(t), cj). Note that here we give

each weight equal importance. In face, according to the

uniqueness of each element, giving different importance may

further improve the performance.

C. Mapping Decision Module

We pair a vehicle in C to a vehicle in V (t) as follows.

S1. We set C∗ as C, V ∗ as V (t), and S as an empty set.

S2. If both C∗ and V ∗ are not empty set, then we

compute the confidence of cj in C∗ as dj =
maxvi(t)∈C∗{wvi(t),cj

(t)}
∑

vi(t)∈V ∗ wvi(t),cj
(t) ; otherwise, return S and end

the process.

S3. We select cj from C∗ with the highest confidence dj .

Then we select vi(t) from V ∗ such that wvi(t),cj =
maxvk(t)∈V ∗{wvk(t),cj}.

S4. We remove cj from C∗, vi(t) from V ∗, and add

(cj , vi(t)) to S. Then goto S2.

The final list of S is the pairing result. Fig. 3 show the

difference between our scheme and the approach by Lee et al.

[9]. We assume that Car 4 left the communication range since

time t2, and we assume that t4−t1 > d and t5−t3 < d, where

d is the time to measure the data freshness. At time t5, Car

1, Car 2, Car 3, and Car 5 are in V2X communication range;

Car 1 and Car 2 broadcast its driving status; Car 3 and Car 5
do not broadcast their driving status; the packet from Car 2 is

losing. We map driving status to the image I(t) according to

C = {b1(t5), b2(t3), b3(t4), b5(t4)}, and Lee et al. are based

on B(t5) = {b1(t5)}. The question is that they are missing

the information of Car 2, Car 3 and Car 5 since the packet of

Car 2 is losing, and the packets of Car 3 and Car 5 do not

broadcast in this moment. Our method uses the most recently

data to solve this problem since the status of a vehicle will

not change much in a very short time. On the other hand, we

withdraw the data b4(t1) form C since this data is expired.

V. EXPERIMENTAL RESULT

We conducted our experiment in an Inter i7-8700k server

with 64GB RAM and two NVIDIA Geforce GTX 1080ti

graphic cards. The software on it included Ubuntu 16.04.6,

CARLA 0.9.7, and YOLOv3. CARLA simulator supports ex-

periment of autonomous driving systems, and YOLO provides

real-time object detection. Since CARLA simulator did not

support V2V communication, it was done by post-simulation.

We only allow vehicles to receive V2V packets from other

vehicles within 30 meters.



Fig. 2. The effect of packet loss.

In our scenario, we consider the rate of packet loss 5%,

and we consider that V2V communication allows vehicles

to broadcast and receive messages 1 time pre second. Fig.

4 points out the impact of packet loss on data fusion. After

the system has been running for a while, the case without

packet loss has about 82% accuracy. When packet loss occurs,

its accuracy is only about 52%, while our proposed method

can improve the accuracy up to about 72%. Therefore, it is

possible to improve the accuracy of the results of data fusion

in a real an lossy environment by predicting the changes of

data or using historical data.

VI. CONCLUSION

Packet loss and delay of V2X communication in a real

mobile environment are unavoidable. In this work, we measure

the effect of packet loss and delay on the V2X data fusion and

see that the performance significantly drops in a lossy network.

To alleviate the negative effect of packet loss and delay, we

enhance the previous method by maintaining a memory to

memorize the most recently V2X message and considering the

information freshness in the proposed schemer. Experimental

result shows that the new method performs much better than

previous method in a lossy environment. In the future, we will

try to predict the car status by using historical data to further

enhancing the accuracy.

Fig. 3. Simulation result.
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