
VM Allocation in Data Center Subject to CPU
Percentile Constraints

Yue Han
College of Information and Communication
National University of Defense Technology

Xi’an, China

yueh2000 8@163.com

Harry Perros
Computer Science Department

NC State University
Raleigh, USA

hp@csc.ncsu.edu

Mingwu Yao
ISN State Key Lab
Xidian University

Xi’an, China

mwyao@IEEE.org

Abstract—At existing cloud computing environment, virtual
machine allocation mechanisms have been actively applied to
resources management for processing dynamic workload in large-
scale data center. In this paper, we address the problem of how
many virtual machines should be allocated to a server, so that
a given percentile of the execution time of a job is bounded
by a predefined value. We first consider the case of “dedicated
CPU”, whereby we calculate the CPU allocated to a single VM.
Subsequently, we extend the analysis to the case where the CPU
is shared equally by different groups of VMs. In this case, we
calculate how many VMs need to be allocated in each group.

Index Terms—Virtual machines allocation, Data Center, Per-
centiles, Phase-type distribution

I. INTRODUCTION

Allocating VMs in a data center is a multi-objective problem

that includes factors such as operation costs, revenues and

performance metrics such as resource utilization, availability

and response time. It is necessary for various vendors to

guarantee high VMs utilization in long-term job execution

period. In recent years, as the the advent of NFV and SDN,

it is getting important to study VMs allocation solutions for

job execution management in large scale data center network.

For example, the works in [1] can be designed as a building

block of a SDN orchestrator. VMs allocation can dynamically

adjust the number of VMs during execution process and the

notable examples are auto-scaling methods [2].

Although the auto-scaling methods are practicable and

suitable for VMs allocation, it is difficult for them to know

about resource requirements in advance from variable user

workloads. To address energy consumption issue in cloud data

centers, most of existing solutions save cost at the expense

of performance degradation, In [3], authors present VM allo-

cation algorithms, which leverages the performance-to-power

ratios and in [4], two semi-Markov decision process (SMDP)-

based VMs allocation methods are proposed to balance the

tradeoff between the services cost and the computing capacity.

In this paper, we consider the problem of VM allocation to

a single core server so that a given percentile of job execution

time on a VM is statistically bounded for the optimal balance

between resource utilization and work performance. The job

execution time on a VM depends on the resources allocated

to the VM by hypervisor tools, mainly, CPU and memory,

but also disk storage, LAN and WAN bandwidth. The works

in [5] solves the multi objective VMs allocation problem .

Specifically, we study the VM allocation problem only under

the CPU constraint. We assume that a VM executes jobs as

the result of user requests. This is a typical scenario in a SaaS

environment, whereby the service in a VM is accessed by users

over the internet.

The paper is organized as follows. An overview of related

works is introduced in Section 2. In Section 3 we use real

workload traces to design a Markov model, and then model

the job execution time in a VM as a phase-type distribution. In

Section 4, we make the 95th percentile of job execution time in

a VM as a function of the CPU (we can obtain any percentile,

but for presentation purpose we use the 95th percentile). In

Section 5, we calculate the number of VMs that should be

allocated to a single core, so that a given 95th percentile is

satisfied. Finally, Section 6 gives the conclusions.

II. RELATED WORK

Cloud data centers allow dynamic and flexible resource pro-

visioning to accommodate time varying multi-user demands.

Jing V. Wang et al [6], propose a VM allocation mechanism

based on stable matching. It may reduce the overall energy

consumption of a cloud data center while maintaining high

QoS. Xinqian Zhang et al [7], propose a novel and effective

evolutionary approach for VM allocation that can maximize

the energy efficiency of a cloud data center. Ali Pahlevan et al

[8], propose a heuristicanda machine learning (ML)-based VM

allocation method. This approach improve the flexibility and

applicability of VM allocation in large-scale DC scenarios.

VM allocation has been extensively studied in the area of

horizontal and vertical auto-scaling under a variety of different

assumptions, whereby the VMs resources can be scaled up or

down (vertical scaling), or the VMs number can be increased

or decreased (horizontal scaling). In this area, predicting VMs

demand is a specific topic in the case of a delay in making

requested resources available[9] [10]. A reasonable assumption

is that a VM is assumed to have a fixed required CPU known

in advance. Under this assumption, optimal VMs number can

be calculated to improve CPU resource utilization and thus

reduce the operating data center consumption.



Lots of VMs allocation mechanism in cloud data centers

have been proposed. In the literatures, it is typically assumed

that the CPU is single core, or it is treated as a number of

single cores if it is multi-core. Bo Yang et al [11], proposed

a combinatorial auction-based mechanism to address VM

allocation in clouds in the presence of multiple types of

VMs. Nejad et al [12], proposed the auction-based greedy

mechanisms for VM provisioning and allocation. Finally, a

comprehensive survey on the problem of allocating VMs to a

data center can be found in [13].

III. A PHASE-TYPE MODEL OF EXECUTION TIME

Our work is based on real workload traces of 644 VMs

that were collected from a production environment by an IaaS

provider, which is not aware of the application configuration

inside a virtual machine, and the data was collected at the VM

level using the VMware ESXi hypervisor. The traces give the

average CPU usage in MHz on a per 5-minute basis of each

of the 644 VMs that ran for a month. Each virtual machine

in the trace ran on a single 2 GHz CPU. Other statistics were

also collected, but they are not used in this paper.

A. Cluster Analysis

We run a cluster analysis on the data points of all VMs by

k-means algorithm in Matlab in order to identify the number

of CPU clusters. It is noted that the set of observations in

each cluster does not belong to the same VMs. That is, we

do not clustered the VMs themselves, but rather their CPU

usage. Thus, the same VMs may appear in all clusters. After

experimenting with different values, we determine k=3, its

cluster means of CPU are 180, 935 and 607MHz, respectively.

TABLE I
TRANSITION PROBABILITIES pij

Cluster 1 2 3
1 0.999 0.0006 0.0005
2 1 0 0
3 1 0 0

B. Markov Process Model

A virtual machine during its life typically switches between

different clusters. Going through all the data we calculated the

number of times a VM in cluster i switches to cluster j in

the next minute. After normalization, we obtain the transition

probabilities pij shown in table 1. We model the VM evolution

by a continuous-time Markov process with three states, one

per cluster, with the transition probabilities as shown in table

1 and services rates: μ1 =1/180, μ2=1/935, and μ3=1/607. The

stationary probability πi shows that the VM is in steady state

i, where i=1, 2, 3, can be obtained numerically by solving the

Markov process with a rate matrix R:

R =

⎛
⎝ −u1 u1p12 u1p13

u2p21 −u2 u2p23
u3p31 u3p32 u3

⎞
⎠ (1)

Fig. 1. The phase-type distribution of the execution time

C. Phase-type Distribution

The execution time can be modelled by a phase-type dis-

tribution (α, T ) with four states, namely the above transient

states 1, 2, 3 and an absorbing state, state 0. The initial

probability vector α gives the probability that the job execution

starts in state i, i=0,1,2,3, and T is the 3× 3 transition matrix

which is part of the generator matrix Q, where

Q =

(
T T 0

0 0

)
(2)

or

Q =

⎛
⎜⎜⎝

−u1 u1p12 u1p13 u1p10
u2p21 −u2 u2p23 u2p20
u3p31 u3p32 −u3 u3p30
0 0 0 0

⎞
⎟⎟⎠ (3)

with T and T 0 being the left and right upper blocks respec-

tively. We assume that the distribution of a job execution time

is the distribution of absorption time. That is, a job starts

from one of three states with probability α and eventually it is

terminated when the process gets absorbed. We may generate

different distributions by varying the absorption probabilities.

In this paper, we assume that the absorption state is only

reachable from transient state 1 as shown in figure 1. The

higher the absorption rate δ, the shorter the execution time.

IV. THE 95th PERCENTILE OF THE EXECUTION

TIME UNDER A CPU CONSTRAINT

In this section, we will obtain the 95th percentile of the

a job execution time on a VM, assuming that the VM has

been allocated B MHz. Let X be a random variable that has

a phase-type distribution (α, T ). The cumulative distribution

F(x) is given by the expression: F (x) = 1 − αeTxe, where

e = (1, 1...1)T and F(x) = 0.95. We will use Matlab to obtain

x numerically by successive approximations.

With the phase-type model, B has no impact on the execu-

tion time as long as it is larger than the service rates μi, i=1,

2, 3. If μi is greater than B, then the execution time will get

longer. We set B is the largest service rate μ1 and calculate the

execution time. Figure 2 gives the plot of the 95th percentile

of the execution time as a function of B with three absorption

rates, δ= 0.1, 0.5, 0.9.



Fig. 2. The 95th percentile of the execution time with the CPU bound B

VMs allocation to a single CPU can be seen as a one

dimensional bin-packing problem. The total CPU requirement

of all the VMs allocated to the same server should be less or

equal to the server’s CPU. The solution can be extended to the

case where a VM executes a mixture of loads, each represented

by a different phase-type distribution. The VM requirements

can be determined by constructing an aggregation of the

execution time as described in the following section.

V. VM ALLOCATION SUBJECT TO A CPU

PERCENTILE CONSTRAINT

In previous section, the bound B is used exclusively by the

VM, and it is not shared with other VMs. A more efficient

CPU usage is to allow a number of VMs to share the same

CPU. In this section, we determine the number of VMs to

allocate on the same CPU. If the total required CPU by all

the VMs is less than the CPU capacity B, then all the VMs

can run without any CPU restrictions. However, if it exceeds

B, we assume that the CPU allocated to each VM is reduced

proportionally, so that the total required CPU is equal to B.

For example, let us consider two VMs, referred to as VM1

and VM2, each represented by a three-state Markov process.

Let μ1, μ2, and μ3 be the service rates in states 1, 2, and 3. To

simplify operations, we assume that the two VMs are identical,

but this method can be applied to heterogeneous VMs. Let πi

be the stationary probability that a VM is in state i. We note

that the two VMs are independent of each other. Therefore,

the stationary probability πij that VM1 is in state i and VM2

in state j is πiπj . Then, we combine the two Markov process

into a single one with nine states, as shown in table 2.

TABLE II
STATES AND SERVICE RATES OF THE COMBINED MARKOV PROCESS

States state of each VM Service rate Adjusted Service rate
1 (1, 1) 2μ1 2μ1

2 (1, 2) μ1+μ2 μ1+μ2

3 (1, 3) μ1+μ3 B
4 (2, 1) μ1+μ2 μ1+μ2

5 (2, 2) 2μ2 2μ2

6 (2, 3) μ2+μ3 μ2+μ3

7 (3, 1) μ1+μ3 B
8 (3, 2) μ2+μ3 μ2+μ3

9 (3, 3) 2μ3 2μ3

Fig. 3. 95th percentile of the execution time with the number of VMs

We still identify the states of the combined Markov process

which exceed B, and replace their rates by B. For instance, let

us assume that states 3 and 7 exceed B. Then, as can be seen in

table 2, their corresponding service rates are changed to B. The

job execution time is modelled by a phase-type distribution

with 10 states, 9 of which are the 9 states of the combined

Markov process, and the 10th state being the absorbing state.

The 95th percentile is obtained as before, i.e., calculating x by

successive approximations so that F(x) = 0.95, where F (x) =
1 − αeTxe, and T is the upper left-hand matrix of the rate

matrix Q representing the new phase-type distribution.
For n (n ≥ 2) identical VMs, we calculate their joint state

probability using the multinomial distribution. For instance,

for the three-state VMs, the probability that ki VMs are in

state i, i=1, 2, 3, where n = k1 + k2 + k3, is:

(
n
k1

)(
n− k1
k2

)(
n− k1 − k2

k3

)
π1k1

π2k2
π3k3

(4)

Subsequently, we can obtain the 95th percentile of the

execution time as above, where Q is the rate matrix based on

the combined n Markov processes. Figure 3 shows the 95th

percentile of the execution time, with δ = 0.3, 0.6, 0.9 as a

function of n. As expected, for a given δ, it increases as n
increases. Furthermore, for a given number of VMs, the 95th

percentile increases as the service time gets longer (i.e., δ gets

smaller). This is because longer service times have higher 95th

percentiles than that of shorter service times.
Now we consider the heterogeneous VMs case. Assume that

there exist G VM groups, each associated with a different

Markov process. The execution time of group g, g =1, 2...

G is modelled by a phase-type distribution. We use the same

approach to obtain the 95th percentile of the execution time.

First the aggregated Markov process is constructed. Let sg
be the total number of the aggregated states and πig be its

stationary probability, g=1,2,. . . ,sg . The probability in a state

is the product of all the individual probabilities. Finally, we

can obtain the 95th percentile of the execution time based

on the aggregated Markov processes. Using this method, we

can search for different combinations of VMs in each group

for which the percentile of the execution time is as close as

possible to a pre-determined value.



Fig. 4. Optimum combinations of VMs from two groups(2 GHz CPU)

Fig. 5. 95th percentile of the optimum combinations in Fig.5

Figures 4 give results of two groups (groups 1 and 2) of

VMs for a 2 GHz CPU assuming no RAM bottlenecks. We first

calculate the maximum number of group 1 VMs that can be

allocated without violating the percentile constraint, likewise,

for group 2. Seen in figure 4, a maximum of 13 group 1 VMs

and 16 group 2 VMs can be allocated. The straight line gives

the set of the optimum combinations (n1, n2) and implies that

a group 1 VM is interchangeable with a group 2 VM as far

as achieving the target percentile. For instance, (1, 16) and (2,

15) are both optimum combinations.

Figure 5 gives the actual percentile value for each of the

optimum combinations. For instance, we have a percentile

value of 179.1 for the case of (1, 16). Seen in figure 5,

none of these combinations have a 95th percentile close to the

percentile constraint, and so any of these combinations can be

used to be the optimum combinations, though the combination

(12,5) seems to be the best by an extremely small margin. It

is worth noting that the set of optimum combinations may not

always lie on the same line as the input parameters change.

Since the numerical results were obtained from the collected

data traces, we have not chosen other related work to be com-

pared with the proposed method. However, it is extensively

applicable to any Markovian model based application. As for

the time complexity, it depends on the number of aggregated

VMs, i.e., the order O(i, j, k), where i, j and k is the number

of group 1, 2, and 3 VMs respectively. As for the compu-

tation complexity, if the numbers of feasible VMs increase

dramatically, larger Markovian representations may lead to

unmanageable and thus the computation is infeasible. This

problem can be resolved by collapsing such distributions to the

mixture of exponential distributions with a small number of

states using the moments method. In this case, an approximate

search method may be usful in an online environment to reduce

the computational complexity.

VI. CONCLUSION AND FUTURE WORK

We addressed VM allocation in a data center subject to a

given execution time. We model it by a phase-type distribu-

tion, whose parameters were estimated from real traces. We

calculate the dedicated CPU allocated to a VM so that the

95th percentile of the execution time is satisfied. Subsequently,

we extended this work to the case of allocating different

VMs groups. This work can be extended to calculate the

individual group percentile rather than that for all groups.

Another extension is to use different CPU weights for the

different VMs groups.

ACKNOWLEDGEMENT

This work was supported by the National Natural Science

Foundation of China (NSFC) under Grant No. 61671353.

REFERENCES

[1] Giuseppe Portaluri, Davide Adami, Andrea Gabbrielli, etc., ”Power
Consumption-Aware Virtual Machine Allocation in Cloud Data Center,”
IEEE GLOBECOM, 2016.

[2] Michael Tighe, Michael Bauer, “Topology and Application Aware Dy-
namic VM Management in the Cloud,” JOURNAL OF GRID COM-
PUTING ,vol. 15, no. 2, pp 273-294, 2017.

[3] Xiaojun Ruan, Haiquan Chen, Yun Tian, Shu Yin, “Virtual machine
allocation and migration based on performance-to-power ratio in energy-
efficient clouds,” Future Generation Computer Systems-The Interna-
tional Journal of eScience, vol. 100, pp 380-394, 2019.

[4] Qizhen Li, Lianwen Zhao, Jie Gao, “SMDP-Based Coordinated Virtual
Machine Allocations in Cloud-Fog Computing Systems,” IEEE Internet
of Things Journal , vol. 5, no. 3, pp 1977-1988, 2018.

[5] Neeraj Kumar Sharma and G. Ram Mohana Reddy, ”Multi-Objective
Energy Efficient Virtual Machines Allocation at the Cloud Data Center,”
IEEE Trans. on Services Computing, vol. 12, no. 1, pp 158-171, 2019.

[6] Jing V. Wang, Kai-Yin Fok, Chi-Tsun Cheng, and Chi K. Tse, ”A Stable
Matching-Based Virtual Machine Allocation Mechanism for Cloud Data
Centers,” IEEE World Congress on Services Computing, 2016.

[7] Xinqian Zhang, Tingming Wu, Mingsong Chen, etc.,”Energy-aware
virtual machine allocation for cloud with resource reservation,” Journal
of Systems and Software, vol. 147, pp 147-161, 2019.

[8] Pahlevan, Ali, Qu, Xiaoyu, Zapater, Marina,”Integrating Heuristic and
Machine-Learning Methods for Efficient Virtual Machine Allocation
in Data Centers,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 37, no. 8, pp 1667-1680, 2018.

[9] B. Bouterse and H. Perros, “Dynamic VM Allocation in a SaaS
Environment,” Annals of Telecommunications, vol. 73, no. 3-4, pp. 205-
218, 2018.

[10] B. Bouterse and H. Perros, “Performance analysis of the reserve capacity
policy for dynamic VM allocation in a SaaS environment,” Simulation
Modelling Practice and Theory, vol. 93, pp 293-304, 2019.

[11] Bo Yang, Q. Chen, Shilong Jiang and Keqin Li, “Envy-free auction
mechanism for VM pricing and allocation in clouds,” Future Generation
Computer Systems, vol.86, pp 680-693, 2018.

[12] M.N. Nejad, L. Mashayekhy, and D. Grosu, “Truthful Greedy Mech-
anisms for Dynamic Virtual Machine Provisioning and Allocation in
Clouds,” IEEE Tran Parallel and Distributed Systems, vol. 26, no. 2, pp
594-603, 2015.

[13] Z. Mann, ”Allocation of Virtual Machines in Cloud Data Centers-
A Survey of Problem Models and Optimization Algorithms”, ACM
Computing Surveys, vol. 48, no. 1, 2015.


