
Dynamic reverse proxy chain generation for
networks in data centers

1st Yang Bai
School of Data and Computer Science

Sun Yat-sen University
Guangzhou, China

baiy8@mail2.sysu.edu.cn

2nd Guixin Guo
National Supercomputing Center

Guangzhou, China

guixin.guo@nscc-gz.cn

3rd Yong Wang
School of Data and Computer Science

Sun Yat-sen University
Guangzhou, China

wangy579@mail2.sysu.edu.cn

4th Kangyou Zhong
National Supercomputing Center

Guangzhou, China

kangyou.zhong@nscc-gz.cn

5th Jiang Li
National Supercomputing Center

Guangzhou, China

jiang.li@nscc-gz.cn

6th Yunfei Du
School of Data and Computer Science

Sun Yat-sen University
Guangzhou, China

yunfei.du@nscc-gz.cn

Abstract—Reverse proxy, as one of the important components
required by the data center to provide application services,
has functions of access control, load balancing, connecting to
different types of networks, etc. In the future, as the application
services requiring reverse proxy further increase, network types
become more and more diverse and complex, and the network
hierarchy becomes higher and higher, reverse proxy will change
from a single layer to multiple layers to form a reverse proxy
chain. The construction of the reverse proxy chain will become
one of the bottlenecks of data center networking operation and
maintenance.

In this paper, we propose a method of automatically con-
structing reverse proxy chains to avoid the problem of manual
static configuration of the reverse proxy chain which is time-
consuming, laborious, and difficult to maintain. In our software-
defined networking experiment, we simulated a full-binary-tree-
like topology of 1534 nodes. We recorded the time to generate
and remove proxy chains of various lengths. The average time
to generate all reverse proxy chains in the topology consisting of
1534 nodes with 100ms delay is around 5100ms, much smaller
than manual configuration, which usually needs several hours.

Keywords—reverse proxy chain, dynamic generation, data
center

I. INTRODUCTION

In recent years, many tech companies such as Google,

Amazon, and Huawei have built their own data centers to

support many kinds of cloud services. Most data centers use

multi-layer network architectures and include many different

types of networks, such as 10 Gigabit Ethernet networks, 25

Gigabit Ethernet networks, and InfiniBand networks. Because

different networks have different interfaces and different re-

quirements for packet size and packet rate, making it difficult

to achieve compatibility on the same router. Even if the

compatibility is really realized, its commercial value is very

small. Therefore, the current solution is to use a proxy server

equipped with multiple types of network interface cards to

solve the communication problem among different networks.

For example, communication between a 10GbE network and a

25GbE network requires a proxy server with a 10GbE network

interface card and a 25GbE network interface card. If a request

is forwarded to a destination through the help of multiple

proxy servers, then the proxy servers involved constitute a

proxy chain. An illustration of multiple networks in a data

center is shown in Figure 1.

.

Fig. 1. An illustration of multiple networks in a data center

Traditionally, the responsibility usually falls upon network

administrators to manually configure layers of reverse proxy

servers. However, it is time-consuming, complicated and dif-

ficult to scale in large-scale scenarios, especially when a

new application server is added to the network. Besides, the

traditional static configuration practice usually leads to poor

availability. In the case of a single node failure in a proxy

chain, application servers which rely on this reverse proxy

chain, are no longer able to provide services.

In this paper, we propose a method of dynamically generat-

ing reverse proxy chains. It can help save network administra-

tors the trouble of manual configuration. Reverse proxy chains

are dynamically generated when new applications servers are

added and automatic adjustments are made in the case of node

failures, to provide users with highly available services.



II. BASIC CONCEPT AND CONTRIBUTION

A. Basic concept

A forward proxy is an Internet-facing proxy used to retrieve

data from a wide range of sources. A reverse proxy is a type

of proxy server that retrieves resources on behalf of a client

from one or more servers. These resources are then returned

to the client, appearing as if they originated from the proxy

server itself. The proxy chain discussed in this paper is a type

of reverse proxy. We mainly study the automatic construction

of reverse proxy chain in the data center.

B. Contribution

Research on proxies has received growing attention over

the past decade. Many researchers have focused on the per-

formance issues of proxy services. Reference [1] proposes a

proxy server by-passing scheme for the chained HTTP proxy

networks to reduce response time. Reference [2] builds proxy

services on the real-time link to reduce network congestion and

improve the efficiency of proxy server. There are also many

cache algorithms [3] [4] [5] for proxy services. And security

issues with proxy service [6] [7] [8] are also a concern.

However, most of these studies only focus on a single proxy

server, without considering proxy chains. In our work, we

designed a method of dynamically generating reverse proxy

chains, which has the following advantages:

a. Proxy chains can make automatic adjustments based on

changes in their network topology.

b. Support for proxies to serve multiple application servers

at the same time.

c. Both access control policies and load balancing policies

can be formulated.

III. DESIGN AND IMPLEMENTATION

In this section, we introduce the architecture design of the

proxy program first. We then demonstrate the construction

process of the reverse proxy chain.

A. Architecture design

The architecture design of the proxy program is shown in

Figure 2. On the left side of the dotted line are the Broadcast

module, Log module and Heartbeat module involved in the

construction and maintenance of reverse proxy chains. The

right side of the dotted line contains the HTTP Proxy module,

the Authentication module and the MySQL database. The

Authentication module and MySQL database in the dashed

box will only appear on top-level reverse proxy servers, which

is used to formulate access control policies.

B. The process of constructing a reverse proxy chain

Before constructing a reverse proxy chain, a non-intrusive

program for broadcasting is started on an application server.

By non-intrusiving we mean not changing the original program

of the application service. The non-intrusive program encapsu-

lates the application server’s IP address, HTTP service’s port

number, etc. into a broadcast data packet. The reverse proxy

servers listen to these broadcasts at all times, and store the

.

Fig. 2. Architecture design

information in the broadcasts into the proxy forwarding table

after filtering. Also, reverse proxy servers use the same packet

data structure for broadcasting proxy information. The process

is repeated until the top-level reverse proxy servers receive the

proxy information. The construction of a reverse proxy chain

from an application server to top-level reverse proxy servers

is thus completed.

In the initial version of the design, we encountered problems

of broadcast storm and circular dependencies of two reverse

proxy servers.

There is at least one network interface card on each reverse

proxy server, and each network interface card will have a

different IP address for connecting to different networks. If

the reverse proxy server gets a broadcast data packet from

one of its network interface cards, and then sends a new

encapsulated data packet back to the same network interface

card, a broadcast storm will occur. A broadcast storm can

consume sufficient network resources so as to render the

network unable to transport normal traffic [9]. Therefore, a

check is performed before sending a broadcast data packet

to each network interface card. If the IP address of the data

source and the IP address of the network interface card are

inside the same network, the broadcast data packet will not be

sent to the network again.

The problem of circular dependency of two reverse proxy

servers not only produces data redundancy but also prevents

the heartbeat mechanism from performing correctly. Therefore,

we added the Proxy Chain field to broadcast data packets

and the proxy forwarding tables. Upon receiving a broadcast

data packet, a reverse proxy server will check whether the

Proxy Chain field in the broadcast data packet contains its

own identity. If it does, the reverse proxy server will ignore the

broadcast data packet. During the next round of broadcasting,

the current reverse proxy server will add its identifier at the

end of the Proxy Chain field. In this way, the problem of

circular dependencies is avoided.

Also, we have implemented a heartbeat mechanism to

ensure the high availability of the system. If it is found that the

Time Stamp field of an entry in the proxy forwarding table

has not been updated for more than two consecutive lifetimes



of a broadcast data packet (a total of 60s), the entry will be

marked as invalid and then removed. And its goroutine for

proxy service will be shut down.

IV. PERFORMANCE EVALUATION

The experimental environment is a Ubuntu 18.04 server

with a 48-core Intel(R) Xeon(R) CPU E5-2692, and 64 gi-

gabytes memory. We used Mininet for our software-defined

network (SDN) simulation experiments, which is a network

emulation orchestration system. We also deployed Ryu as our

SDN controller, which is a component-based software-defined

networking framework. We carried out two experiments. The

first one has a full-binary-tree-like topology of 1534 nodes,

including 1023 servers and 511 switches. We define the length

of a reverse proxy chain as the number of servers on the

reverse proxy chain, that is, the number of reverse proxy

servers plus one application server, and the distance between

two nodes as the length of the shortest reverse proxy chain

between them.

A. A full-binary-tree-like topology of 1534 nodes

.

Fig. 3. A full-binary-tree-like topology illustration

The 1023 servers are nodes in a full binary tree, being

connected by switches. An illustration is shown in Figure 4,

the S means switch and h reverse proxy server. The root node

numbered 1 is the top-level reverse proxy server. The length

of the longest reverse proxy chain in this topology is 18. The

bandwidth between two adjacent devices was set to 10Mbit,

the packet loss rate 1%, and the link delay 30ms, 100ms,

500ms, and 1000ms, respectively each time. An application

service and a non-intrusive program for broadcasting were

deployed on the leaf node 1023. And a proxy program was

running on the other 1022 servers. Due to the nature of the

topology above: the path from one node to another without

visiting a node twice is unique. Therefore, the distance from

a node to an application service node is the length of the

reverse proxy chain. A total of 1022 reverse proxy chains

are generated. The proxy chain from node 1023 to itself is

not considered. We recorded the time required to complete

the construction of these 1022 reverse proxy chains. After

the program for broadcasting on node 1023 was closed, the

time required for all the information of the 1022 reverse proxy

chains to be removed from their proxy forwarding tables was

recorded. For different link delays, we calculated the average

time of same-length proxy chain construction and destruction.

Finally, the statistical results are drawn as two scatter plots as

shown in Figures 5 and 6.

.

Fig. 4. The time to construct proxy chains in full-binary-tree-like topology

The abscissa of Figure 5 is the distance from a node to

the application server, which is also the length of the proxy

chain in the current network topology. And the ordinate is

the time from the start of broadcasting to the completion of

the construction of the proxy chain, in milliseconds. As is

shown in Figure 5, the construction time of a proxy chain

is proportional to its length, which is consistent with our

expectations. However, in the 100ms delay network, the time

required for the construction of a proxy chain of length

4 (6118.5ms) varies greatly, which almost coincides with

the corresponding 1000ms delay point (6032.67ms). It even

exceeded the construction time of proxy chains of length 18

in 100ms delay network.

As is shown in Figure 4, there are only 4 proxy chains of

length 4 ending at node 1023:

h127 → h255 → h511 → h1023
h254 → h255 → h511 → h1023
h1020 → h510 → h511 → h1023
h1021 → h510 → h511 → h1023
Since the average construction time of proxy chains of

length 3 does not vary much and there is no abnormality in

the average construction time of proxy chains of length 5, the

following two links were working correctly:

h127 → h255 → h511 → h1023
h254 → h255 → h511 → h1023
This means that there must be something wrong with the

link from node 510 to node 1020 or 1021, which caused a

great deviation in the average construction time of the two

proxy chains:

h1020 → h510 → h511 → h1023



h1021 → h510 → h511 → h1023
After some investigation and analysis, we found that

Mininet uses processes to simulate nodes and links. Due to the

limitation of the memory, a few of processes are abnormally

closed. Since only two links were found abnormal in more than

1,000 links, the error rate was less than 1%, so we retained

the results of this experiment.

For the current network topology, the path from a reverse

proxy server to an application server is unique, and because

a switch connects two reverse proxy servers, the link delay

needs to be multiplied by 2, so the theoretical time is:

T (time to construct all proxy chains) = longest proxy chain

length * link delay * 2

In this case, it takes 37290ms, which is 37.29 seconds,

in the 1000ms delay network, which is of the same order

of magnitude as the theoretical value 36,000ms. The same

conclusion is true for the other three levels of latency.

.

Fig. 5. The time to remove proxy chains in full-binary-tree-like topology

The abscissa of Figure 6 is the distance from a node to

the application server, which is also the length of the proxy

chain in the current network topology. And the ordinate is

the time from the termination of broadcasting to the removal

of proxy chains from the network, in seconds. It can be seen

from Figure 6 that there is little difference in the time required

for the proxy chains of the same length to be removed from

the four different delay networks. Because of the existence of

the heartbeat mechanism, for each reverse proxy server, if no

new broadcast data packet is received within two consecutive

lifetimes (a total of 60s), then the proxy chain is considered

invalid, and broadcasting of the proxy information to higher-

level reverse proxy servers is terminated. The message that the

proxy chain is invalid is gradually passed from the application

server to the top-level reverse proxy server, so it takes a long

time to remove all the proxy chains from the network. The

theoretical time is:

T (time to remove all the proxy chains from the network) =

length of the longest proxy chain * 60s + length of the longest

proxy chain * link delay * 2

It takes 1109820ms in a 1000ms delay network, which is

about 18.5 minutes and is of the same order of magnitude

as the theoretical value 18.6 minutes, which is in line with

our expectations. Experiments with the other three levels of

network delay setting have also reached the same conclusion.

It should be additionally noted that the removal of the expired

reverse proxy chains does not affect the use of other proxy

chains.

In addition to the above experiments, we also tested the

impact of deliberately deleting a key node on a proxy chain

in the two topologies mentioned above. In the 1534-node

topology, the proxy chain between any two nodes is unique.

Therefore, all proxy chains containing deleted nodes can not

be used, and they are gradually removed from the network.

The time required for removal is proportional to the length

of a proxy chain, which is consistent with our previous

conclusions. Besides, the correctness of the proxy chain has

also been verified, which fully meets our expectations.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a method of dynamically generat-

ing reverse proxy chains that helps avoid the time-consuming

and labor-intensive manual configuration for distributed net-

works in data centers. In our experiments, we set up a

full-binary-tree-like topology network with 1534 nodes. We

collected the time required to construct all the proxy chains

and the time required to remove the proxy information of

a service in a network after the services and the program

for broadcasting were closed. And we verified the automatic

adjustment of proxy chains after designating a faulty node.

REFERENCES

[1] G. Kim and S. Lee, “A proxy server by-passing scheme for the chained
http proxy networks,” in 2014 International Conference on Information
and Communication Technology Convergence (ICTC), Oct 2014, pp. 886–
887.

[2] G. Du, Z. Zhang, and X. Wu, “Http proxy server based on real-time link,”
in 2010 International Conference on Multimedia Information Networking
and Security, Nov 2010, pp. 169–173.

[3] R. Gupta and S. Tokekar, “Preeminent pair of replacement algorithms
for l1 and l2 cache for proxy server,” in 2009 First Asian Himalayas
International Conference on Internet, Nov 2009, pp. 1–5.

[4] Y. Niranjan, S. Tiwari, and R. Gupta, “Average memory access time
reduction in multilevel cache of proxy server,” in 2013 3rd IEEE
International Advance Computing Conference (IACC), Feb 2013, pp. 44–
47.

[5] Zhenzhong Yang and Xiaojun Huang, “Dynamic configuration of reverse
proxy cache based on multi-dimensional time series prediction of visit
traffic,” in 2016 7th IEEE International Conference on Software Engi-
neering and Service Science (ICSESS), Aug 2016, pp. 237–240.

[6] C. Lin, J. Liu, and C. Lien, “Detection method based on reverse proxy
against web flooding attacks,” in 2008 Eighth International Conference
on Intelligent Systems Design and Applications, vol. 3, Nov 2008, pp.
281–284.

[7] W. Yanhua, Y. Kuihe, and Z. Yun, “Research and realization of security
proxy based on ssl protocol,” in 2007 8th International Conference on
Electronic Measurement and Instruments, Aug 2007, pp. 2–264–2–267.

[8] Wen-Guang Long and Jian-Ping Li, “Designing secure session based
on reverse proxy,” in 2012 International Conference on Wavelet Active
Media Technology and Information Processing (ICWAMTIP), Dec 2012,
pp. 299–301.

[9] N. Wisitpongphan, O. K. Tonguz, J. S. Parikh, P. Mudalige, F. Bai, and
V. Sadekar, “Broadcast storm mitigation techniques in vehicular ad hoc
networks,” IEEE Wireless Communications, vol. 14, no. 6, pp. 84–94,
2007.


