
Design and Implementation of Comprehensive Test
Automation Method for API Adapter in C-Plane and

U-Plane

Sho Kanemaru
NTT Network Service Systems

Laboratories
NTT Corporation

Tokyo, Japan
sho.kanemaru.pw@hco.ntt.co.jp

Tsuyoshi Toyoshima
NTT Network Service Systems

Laboratories
NTT Corporation

Tokyo, Japan
tsuyoshi.toyoshima.dk@hco.ntt.co.jp

Tomoki Ikegaya
NTT Network Service Systems

Laboratories
NTT Corporation

Tokyo, Japan
tomoki.ikegaya.ya@hco.ntt.co.jp

Kensuke Takahashi
NTT Network Service Systems

Laboratories
NTT Corporation

Tokyo, Japan
kensuke.takahashi.gm@hco.ntt.co.jp

Abstract— The Business-to-Business-to-X (B2B2X) model
has increased the importance of orchestrators that build and
operate services that consists of various wholesale services. To
develop RESTful API-based services, service providers need to
catch up on the specifications of new wholesale services and
specification changes of existing services quickly and
inexpensively. Therefore, it is important to develop software
called an API adapter that absorbs API differences from
various services quickly and inexpensively. In this paper, we
propose a method for comprehensively automating testing of
not only C-Plane signals such as service
provisioning/change/abolishment but also U-Plane signals such
as communication between user devices and servers. We
implemented our proposal using open source software and
found that it improved test efficiency in an actual software
development project.

Keywords—API Adapter, Test automation, Orchestrator

I. INTRODUCTION
The spread of the Business-to-Business-to-X (B2B2X)

model is increasing the importance of integrated
management software called an “orchestrator”, which
supports the provisioning and operation of multiple
wholesale services provided as representational state transfer
application programming interfaces (RESTful APIs;
hereinafter simply called APIs). However, the specifications
of published APIs vary for each service and are frequently
modified, so service providers are required to catch up on the
specifications of new wholesale services and specification
changes of existing services quickly and inexpensively. Thus,
service providers need to develop API adapters, which
convert the various wholesale APIs (Southbound APIs in Fig.
1) into unified APIs (Internal APIs in Fig. 1) and absorb the
API differences in various wholesale services.

In the service development that combines the wholesale
partner service, the API adapter needs to be able to be
added/changed quickly. Therefore, technology is needed to
develop an API adapter efficiently [1]. In the test process in
network service development, it is necessary to test that not

only the control signals (C-Plane signals) such as the
provisioning/changing/abolishing operations of the service
but also the data communication signals (U-Plane signals)
are correctly exchanged in order to confirm that the C-Plane
signals are correctly reflected in network equipment and the
customer terminals.

As a method to deliver services in a short time, agile
development practices are frequently used. When developing
network services in agile, as the "sprint" (a development unit
in agile) progresses, the number of items that need to be
tested per sprint tends to increase. This is because test items
in sprint N include not only items developed in the current
sprint but also regression testing items developed in the
previous sprint (i.e., sprint N-1). However, the test period is
constant in each sprint. Therefore, development cannot
proceed on schedule unless the test efficiency of the C-Plane
and U-Plane is improved. Techniques have been proposed to
simplify the design process and the implementation process
of the API adapter [1] and a part of the testing process [2],
but no technique has been proposed to comprehensively
automate the testing of the C-Plane and U-Plane signals.

Fig. 1 Orchestrator and API adapters

In this paper, we propose a method to comprehensively
automate testing of C-Plane and U-Plane signals in the
testing process of an API adapter, which is a key element in
the development of network services in the B2B2X model.
This proposal consists of (1) a mechanism that can carry out
a test combining C-Plane and U-Plane signals by combining
the API adapter test support function, API adapter U-Plane
signal test support function, user terminal simulation device,
and user server simulation device and (2) a test scenario
execution management technique that executes APIs of C-
Plane and U-Plane signals on the basis of the test scenario
and analyzes the test results.

II. RELATED WORK

A. API specification method
Numerous methods to test RESTful API-based software

have been proposed. As software development and testing
are often done by teams, API specifications should be
shared by teams, and a format that defines API
specifications is useful. Swagger [3] is a standard format
defined by the OpenAPI Initiative [4] for describing the
interface of RESTful API, and its corresponding document
is called Swagger Spec. Swagger Spec is expressed in a file
format such as JSON or YAML, and API specifications can
be discussed while visualizing documents using editing
tools such as Swagger Editor.

B. Test Driver/Stub generation method
As an API adapter converts the Southbound APIs into the

Internal APIs, the API adapter alone cannot be used for
testing, and a stub or driver that simulates the corresponding
system is required. The driver sends an API request to the
API adapter and receives an API response (i.e., it simulates
the orchestrator in Fig. 1). The stub receives the API request
from the API adapter and sends the API response (i.e., it
simulates the wholesale services in Fig. 1). Cucumber [5] is
an open source software (OSS) for automating the testing of
RESTful APIs and acts as a driver by executing a test
scenario defined by a grammar called Gherkin. In addition,
since Cucumber has a function to judge whether the response
returned from the API adapter is as expected or not, the work
of manually verifying the API response can be coded, and it

is useful for improving test efficiency. Postman [6] is an OSS
that enables HTTP clients and, like Cucumber, provides a
mechanism for automating the tests of drivers and APIs.
There is also a tool called Newman [7], which is a CLI
version of Postman. As stub generation technologies, there is
Swagger-Codegen [8]. Swagger-Codegen is a tool that
automatically generates drivers and stubs on the basis of the
API specification defined in the Swagger Spec. These
driver/stub generation technologies enable software
necessary for testing API adapters to be prepared quickly.

C. Test automation technology
In the related research [2], the test of C-Plane in the API

adapter test process was automated. On the other hand, the
test automation of the U-Plane is not mentioned, so it is not
possible to verify whether the content of the C-Plane signal
is correct even if the C-Plane signal is communicated. For
example, if the API response of the C-Plane signal is normal,
whether the parameters stored in the API request are neither
excessive nor deficient can be verified, but whether the
contents of the parameters (e.g., IP address values) are
actually correct cannot be verified. Procedures such as login
to various network devices and communication confirmation
commands of U-Plane signals are necessary to check the
accuracy of parameters, and this confirmation takes time.

III. PROPOSED METHOD

A. Components
The proposed method consists of (A) an API adapter test

support function, (B) an API adapter U-Plane signal test
support function, (C) a user terminal simulator, and (D) a
user server simulator (see Fig. 2). (A) The API adapter test
support function is responsible for managing the execution of
the whole test scenario and executing the test of the C-Plane.
It generates test scripts from (a) the Northbound API
specification, (b) wholesale service API specification, (c) test
parameters, and (d) wholesale service data. After generating
the test scripts, (A) runs the tests of C-Plane signals on the
basis of the test scripts and outputs the test results. (B) The
API adapter U-Plane signal test support function tests the U-
Plane signal on the basis of a test script generated by (A) the
API adapter test support function. Specifically, the

Fig. 2. Procedure of proposed method

communication of the U-Plane signal can be verified by
executing the API of the device group ((C) the user terminal
simulator, and (D) the user server simulator). (C) The user
terminal simulator and (D) the user server simulator are used
to verify the communication of the U-Plane signal. For
example, after an operation that activates the communication
between the user terminal and the user server by (A) the API
adapter test support function, (C) and (D) verify the
communication of U-Plane by using commands such as ping
and curl from (C) to (D) or vice versa. As a result, it is
possible to verify whether the contents of the API request is
correct and whether the service
provisioning/changing/abolishing operations are properly
reflected in the network equipment group and customer
terminals (as described in Section I).

B. Test script execution management technology
The test script generated by (A) the API adapter test

support function is passed to the test execution management
part” and executed (step 4 in Fig. 2). The test script is run by
the C-Plane signal test execution part and the U-Plane signal
test execution part. The test execution management part
controls the execution of the test script. Specifically, it
instructs the C-Plane signal test execution part to test the C-
Plane signals (e.g., sending an provisioning operation for a
service). When the C-Plane signal test is completed (steps 5
to 7 in Fig. 2), the U-Plane signal test (e.g., curl command
from (C) the user terminal simulator to (D) the user server
simulator via wholesale service) is instructed to the U-Plane
signal test execution part (steps 8 to 10 in Fig. 2), and the
result is output (steps 11 to 12 in Fig. 2). If the C-Plane
signal test fails, the test result is output without performing
the U-Plane signal test. The test script not only sends API
requests and receives API responses but also verifies whether
the contents of the received API responses are the same as
expected in the test scenario. For example, the test script
checks if the response code is 200 OK, if the response body
is in JSON format, and if the JSON format array contains the
expected value in the Nth entry. The test script removes the
manual review from the testing process and enables test
scripts to be created that are highly compatible with
continuous integration (CI) such as "Automatically tests once
a day and sends the results via chat."

C. Benefit of our proposal
The proposed method can comprehensively test the C-

Plane and U-Plane signals. As a result, it can verify that not
only signals such as service
provisioning/changing/abolishing operations are correctly
exchanged but also that the parameters in the API request are
correct and are precisely reflected in network equipment
groups, customer terminals, etc., thus expanding the
automation range of the API adapter test (Fig. 3).

IV. IMPLEMENTATION

A. Implementation scope
This section describes the implementation of step 4 and

subsequent steps in Fig. 2. Other steps (i.e., steps 1 to 3 in
Fig. 2) will be implemented in the future.

B. Test scenario example
In the example test scenario, a network service using a

SIM card is activated, the SIM card configuration is changed,
and the SIM card is terminated.

1. Service activation order input (C-Plane signal)
2. Verify SIM information is registered with

authentication server (Verifying the Results of
Scenario 1)

3. User Terminal Attach Process (U-Plane signal)
4. Verify ping command from User Terminal to User

Server succeeds (U-Plane signal)
5. Service change order to suspend SIM card usage (C-

Plane signal)
6. Verify the SIM Information on the Auth.Server has

changed (Verifying the Results of Scenario 5)
7. Verify ping command from User Terminal to User

Server fails (U-Plane signal)
8. Service termination order (C-Plane signal)
9. Verify the SIM Information for the Auth. Server has

been deleted (Verifying the Results of Scenario 8.)
10. Verify ping command from User Terminal to User

Server fails (U-Plane signal)

C. Example of equipment configuration
We used a Newman to implement the test execution

management part, the C-Plane signal test execution part, and
the U-Plane signal test execution part. To implement a user
terminal simulator, a server having APIs shown in Fig. 4
(A)(B) is used. To implement an user server, a server having
the API shown in Fig. 4 (C) is used. We use a Mobile
Subscriber ISDN Number (MSIDSN) as an user terminal
identifier. To implement Wholesale Service Equipment, a
radius server is used as the authentication function of the
SIM card.

D. Example procedure
 First, input files prepared by the developer are read by

the test scenario generation part. (a) The Northbound API

Fig. 4. APIs provided by (C) user terminal simulator and (D) user server
simulator

Fig. 3. Test coverage expansion by our proposal

specification and (b) Wholesale Services API specification
are JSON files in Swagger Spec format. (c) Test parameters
and (d) Wholesale Services data are CSV format files.
Second, the test script generation part largely executes two
kinds of processing. One creates the Postman collection
(JSON files that Newman runs) as a test script from input
files (a) and (b), and the other generates parameter patterns.
Next, Newman runs the Postman collection created by the
test script generation part. In addition to sending API
requests and receiving API responses, Newman can run the
scripts to verify if the received API response is as expected.
In addition to verifying the Northbound API response,
Newman runs the Wholesale Service Equipment (Radius
Server) API to make sure that the Northbound API execution
is reflected on the Wholesale Service Equipment side as well
(e.g., scenarios 2, 6, and 9). After Newman executes
scenarios 1 to 2, the U-Plane signal is tested. Newman
executes the API of the user terminal simulator and performs
terminal attachment processing (scenario 3) and ping
communication confirmation processing (scenario 4).
Success of processing in scenario 3 and 4 means that the
contents of C-Plane signal (e.g., MSISDN) is correct and
precisely reflected in the wholesale service equipment. If the
processing succeeds, scenario 5 is executed, and if it fails,
the test is interrupted and the test result is output. Then,
operation of service change and U-Plane confirmation
(scenarios 5 to 7) and operation of service abolition and U-
Plane confirmation (scenarios 8 to 10) are executed, and the
test result report is output after both operations are completed.
As an example of a test result report, a Newman plug-in
“Newman-reporter-htmlextra” [9] is used.

E. Ideas in the test execution management part
We faced a challenge when implementing the test

execution management part with Newman. The test scenario
described in Section IV-B consists of several test scripts
(Postman collections) and state transitions. Therefore, the
values used in the previous test script must be used in the
next test script, and there must be a mechanism for passing
values between scripts. There are two kinds of parameters in
the test scripts: static and dynamic. Static parameters are
values that do not change during test execution and are
determined before the test execution (e.g., the API endpoint
URL). Dynamic parameters are values generated during test
execution and are unknown before the test execution. For
example, the ID issued to the device by the system when the
SIM card is activated. To manipulate these parameters, we
have used two kinds of parameters provided by Postman:
environment values and global values. Environment values
are used for defining the parameters that depend on the
environment (e.g., IP address and endpoint). We stored static
values in the environment values. Environment values can be
managed in the JSON file and the JSON file can be loaded
with a "-e" option when we execute the Newman command
(step 1 in Fig. 5). Global values are used for passing the
parameters between multiple Postman collections. We stored
dynamic values in the global values. Global values can also
be managed in the JSON file, and the JSON file can be
loaded with a "-g" option and can be written with a "--export-
globals" option when we execute the Newman command
(step 2 in Fig. 5). By combining multiple test scripts using
environment and global values, we have successfully
implemented a test scenario that includes state transitions.

V. EVALUATION
We introduced the implementation example described in

Section IV into the agile development of a network service.
We found that the contents of the C-Plane signal were
correct by verifying not only the operation of the API adapter
by C-Plane signal test but also the communication of the U-
Plane signal after the C-Plane signal was input. Therefore,
the proposed method solved the problems of the existing
methods described in Section II-D and achieved the utility
described in Section III-C. In addition, the number of tests
that could be run in the same period was more than 25 times
that before the proposed method was introduced (from 200 to
5223 items). In the test process without our proposed method,
the curl command was used for the API execution, and the
developer needed to manually verify the API response after
the curl command execution. By introducing the proposed
method, the manual review process, which is a bottleneck,
was eliminated, and test efficiency was significantly
improved.

VI. CONCLUSION
In this paper, we proposed a method to comprehensively

test not only C-Plane signals but also U-Plane signals in the
testing process of an API adapter, which is an important
element of network service development in the B2B2X
model. This method expands the testing range and enhances
the efficiency of the API adapter. This paper described each
equipment and automation system for automating tests and
described the implementation examples using OSS on the
basis of test scenario examples. Evaluation results showed
the proposed system is feasible and effective. As a future
challenge, we will implement the test script generation part
as shown in Fig. 2.

REFERENCES
[1] N. Take, “Method to Simplify API Adapter Development using GUI”,

Proc. of the 2018 IEICE Society Conference, B-14-13, Sep. 2018
[2] Sho Kanemaru, “A study on automation of testing API adapters”,

Proc. of the 2019 IEICE Society Conference, BS-4-12, Mar. 2019
[3] Swagger, https://swagger.io/
[4] Open API Specification, https://swagger.io/specification/
[5] Cucumber, https://cucumber.io/
[6] Postman, https://www.getpostman.com/
[7] Newman, https://learning.getpostman.com/docs/postman/collection-

runs/command-line-integration-with-newman/
[8] Swagger-Codegen, https://github.com/swagger-api/swagger-codegen
[9] Newman-reporter-htmlextra,

https://www.npmjs.com/package/newman-reporter-htmlextra

Fig. 5. Pass static parameters and dynamic parameters between multiple
Postman collections

