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1. Introduction 
Recently, the advent of powerful distributed computing platforms has had a marked influence on 

the antenna design strategies, particularly for those mounted on complex platforms, e.g., satellites, 
spacecrafts, aircrafts and ships. The modeling of such antennas represents a formidable challenge for 
several reasons: the platforms have complex material properties; the limited real estate available creates a 
serious compatibility problem; the frequency range over which the modeling is desired is often large; and, 
available commercial codes for antenna analysis are woefully inadequate. The difficulties in modeling 
these problems are further exacerbated by the presence of dielectric or FSS (frequency selective surface) 
radomes that interact with the antenna and influence the impedance and radiation characteristics of the 
antenna, often in a deleterious way. It is necessary to estimate these effects accurately in order to predict 
the system performance of the antenna complex. 

In the first part of this review paper, we will discuss a number of antenna designs (see Figs. 1-6) 
that serve as illustrative examples of challenging problems, and then go on to describe how we might 
meet the challenges they presented when we attempted to model them. 

Next, we will turn to the problem of analyzing and synthesizing antenna composites with 
metamaterial type of substrates and superstrates, used to enhance the performance of a class of planar 
antennas (see Figs. 7-11). Strategies for designing these types of antennas, which have drawn 
considerable recent attention of the antenna community, will be presented along with examples of both 
successful and “not so successful” designs. Guidelines for successful design of antenna-metamaterial 
composites will also be included in the presentation. 
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Fig. 1. Mars Reconnaissance Orbiter High Gain Antenna and Low Gain antenna Configuration (courtesy 
of W. Imbriale, JPL). 
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Fig. 2. Various view of X-Ka-band Feed assembly (without the long X-band and Ka-band waveguides) 
(courtesy of W. Imbriale, JPL). 
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Fig 3. Illustration of offset-fed reflectarray antennas spacecraft accommodation (courtesy of W. Imbriale, 
JPL). 

 
Fig. 4. ESA satellites (courtesy of C. Mangenot, P. Rinous, ESA). 
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Fig. 5. Polarization grid design (courtesy of C. Mangenot, P. Rinous, ESA). 

 
Fig. 6. Conformal arrays (courtesy of C. Mangenot, P. Rinous, ESA). 
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Fig. 7. Artificial Magnetic Ground Planes (AMGs). Synthesized 2-D or 3-D periodic metallic or dielectric 
structures to effectively impede the propagation of electromagnetic waves in a specified band of 
frequency. 
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Fig. 8. Reduced size antenna realized with metamaterial loading. 
 

Jx xy-

plane1

Jy xy-

plane1
Jx xy-

plane2

Jx xy-

plane3

7.25GHz

7.55GHz

7.75GHz

Jx xy-

plane1

Jy xy-

plane1
Jx xy-

plane2

Jx xy-

plane3

7.25GHz

7.55GHz

7.75GHz

 
 

Fig. 9. Current Densities computed by using the parallelized FDTD (PFDTD) code. 
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Fig. 10. Microstrip patch antenna on AMGs Fig.11. Directivity of the Dual-band dual
 polarized Patch Antenna with/without 
 EBG Superstrate. 
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