TE scattering from finite rectangular grooves in a conducting plane using overlapping T-block analysis

Yong H. Cho

School of Information and Communication Engineering Mokwon University 800 Doan-dong, Seo-gu, Daejeon, 302-729, Republic of Korea E-mail: yhcho@mokwon.ac.kr

Abstract

TE plane-wave scattering from finite rectangular grooves in a conducting plane is systematically analyzed with the overlapping T-block method. Multiple rectangular grooves are divided into several overlapping T-blocks to obtain the fast CPU time, CAD applicability, and wide versatility. The scattered fields are obtained in simple closed forms including a fast-convergent integral.

1 Introduction

TE plane-wave scattering from finite rectangular grooves in a conducting plane is a fundamental problem and has been extensively studied [1-5]. In the present work, we introduce a novel approach based on the overlapping T-block method for the scattering from finite rectangular grooves in a conducting plane. The dispersion analysis [6] of overlapping T-blocks are extended to the scattering analysis of finite rectangular grooves. The main advantage of the overlapping T-block method is that scattering relations of finite rectangular grooves are obtained as simple closed forms without the need of the integral equation technique [1,2]. The overlapping T-block method allows us to obtain a simple yet numerically efficient series solution including a fast-convergent integral.

2 Field Analysis of a Single Groove

Consider a rectangular groove with the TE plane-wave incidence shown in Fig. 1. The time-factor $e^{-i\omega t}$ is suppressed throughout. The incident and reflected E_z fields are shown as, respectively,

$$E_z^i(x,y) = \exp[ik_2(\sin\theta_i x - \cos\theta_i y)] \tag{1}$$

$$E_z^r(x,y) = -\exp[ik_2(\sin\theta_i x + \cos\theta_i y)]$$
 (2)

where $k_2 = \omega \sqrt{\mu_2 \epsilon_2} = 2\pi/\lambda_2$ and θ_i is an incident angle of the TE plane-wave. In regions (I) (-d < y < 0) and (II) (y > 0), the E_z components are

$$E_z^I(x,y) = \sum_{m=1}^{\infty} p_m \sin a_m(x+a) \sin \xi_m(y+d) [u(x+a) - u(x-a)]$$
 (3)

$$E_z^{II}(x,y) = \sum_{m=1}^{\infty} p_m \sin(\xi_m d) \left[E_m(x,y) + R_m^E(x,y) \right]$$
 (4)

Figure 1: Geometry of rectangular groove.

where $a_m = m\pi/(2a)$, $\xi_m = \sqrt{k_1^2 - a_m^2}$, $k_1 = \omega\sqrt{\mu_1\epsilon_1} = 2\pi/\lambda_1$, and $u(\cdot)$ is a unit step function. Based on the radiation condition and the $E_z^I(x,y)$ component, we represent $E_m(x,y)$ in (4) as

$$E_m(x,y) = e^{i\eta_m y} \sin a_m(x+a) [u(x+a) - u(x-a)]$$
 (5)

where $\eta_m = \sqrt{k_2^2 - a_m^2}$. By utilizing the Green's function relation in [6] and deforming the integral path, we obtain the fast-convergent integral as

$$R_m^E(x,y) = \frac{k_2 a_m}{\pi} \int_0^\infty \frac{(1+2vi)\eta \sin(\eta y)}{\zeta(\zeta^2 - a_m^2)} \left[(-1)^m e^{i\zeta|x-a|} - e^{i\zeta|x+a|} \right] dv$$

$$= \frac{k_2 i}{2} \int_{-a}^a \frac{y H_1^{(1)}(k_2 \sqrt{(x-x')^2 + y^2})}{\sqrt{(x-x')^2 + y^2}} \sin a_m(x'+a) dx' - E_m(x,y)$$
(6)

where $\eta = k_2 v(v-i)$ and $\zeta = \sqrt{k_2^2 - \eta^2}$. The total electric field is, therefore, given as

$$T_E(x,y) = E_z^I(x,y) + E_z^{II}(x,y).$$
 (7)

When $\rho = \sqrt{x^2 + y^2} \to \infty$, (4) becomes

$$E_z^{II}(\rho,\theta) \sim \frac{e^{i(k_2\rho - \pi/4)}}{\sqrt{2\pi k_2\rho}} k_2 \cos\theta \sum_{m=1}^{\infty} p_m \sin(\xi_m d) F_m(-k_2 \sin\theta; a)$$
 (8)

where $\theta = \tan^{-1}(x/y)$.

3 Field Analysis of Multiple Grooves

It is possible to apply the overlapping T-block approach to the geometry of multiple rectangular grooves shown in Fig. 2(a). We first divide the multiple grooves in Fig. 2(a) into several overlap-

Figure 2: Geometry of (a) multiple rectangular grooves and (b) overlapping T-blocks.

ping T-blocks as shown in Fig. 2(b), thus facilitating the CAD applicability. The superposition procedures are utilized in [6]. The E_z fields of Fig. 2(a) are represented as

$$E_z(x,y) = T_E^{(1)}(x,y) + T_E^{(2)}(x-T^{(2)},y) + \dots + T_E^{(N)}(x-T^{(N)},y)$$

$$= \sum_{n=1}^N T_E^{(n)}(x-T^{(n)},y)$$
(9)

where $T^{(1)} = 0$ and N is the number of grooves.

4 Numerical Computations

To understand the scattering characteristics of finite rectangular grooves, we define a backscattered echowidth as

$$\sigma = \lim_{\rho \to \infty} 2\pi \rho \left| \frac{E_z^{II}(\rho, \theta)}{E_z^i(\rho, \theta_i)} \right|^2$$
 (10)

Table 1 represents the behaviors of a normalized backscattered echowidth versus an incident angle, θ_i . It is seen that our higher-mode solutions (m = 5, 7) converge to the more higher modes (m = 9, 11). A dominant-mode solution is quite accurate only near to the normal incidence. Beyond $\theta_i = 30^{\circ}$, higher-mode solutions (m = 5, 7) should be used to compute the backscattered echowidth. Fig. 3 illustrates the $E_z(x, y)$ field continuity to verify our approach.

Table 1: Behaviors of normalized backscattered echowidth, σ/λ_0 [dB] versus incident angle, θ_i for $a = 1.1\lambda_0$, $d = 1.6\lambda_0$, and $\lambda_1 = \lambda_2 = \lambda_0$.

Angle	m=1	m=3	m=5	m=7	m=9	m=9
	14.64	15.37	15.32	15.31	15 . 31	15.31
30°	-12.11	7.73	8.07	8.08	8.09	8.10
60°	-43.43	- 8.54	9.36	9.28	9.26	9.24

Figure 3: $E_z(x,y)$ field distributions for $\theta_i = 0^\circ$, $a = 1.1\lambda_0$, $d = 1.6\lambda_0$, and $\lambda_1 = \lambda_2 = \lambda_0$

References

- [1] T. B. A. Senior, K. Sarabandi, and J. R. Natzke, "Scattering by a narrow gap," *IEEE Trans. Antennas Propagat.*, vol. 38, no. 7, pp. 1102-1110, July 1990.
- [2] K. Barkeshli and J. L. Volakis, "Scattering from narrow rectangular filled grooves," *IEEE Trans. Antennas Propagat.*, vol. 39, no. 6, pp. 804-810, June 1991.
- [3] T. J. Park, H. J. Eom, and K. Yoshitomi, "An analytic solution for transverse-magnetic scattering from a rectangular channel in a conducting plane," *J. Appl. Phys.*, vol. 73, no. 7, pp. 3571-3573, April 1993.
- [4] Y. Shifman and Y. Leviatan, "Scattering by a groove in a conducting plane-A PO-MoM hybrid formulation and wavelet analysis," *IEEE Trans. Antennas Propagat.*, vol. 49, no. 12, pp. 1807-1811, Dec. 2001.
- [5] E. Howe and A. Wood, "TE solutions of an integral equations method for electromagnetic scattering from a 2-D cavity," IEEE Antennas Wireless Propagat. Lett., vol. 2, pp. 93-96, 2003.
- [6] Y. H. Cho and H. J. Eom, "Analysis of a ridge waveguide using overlapping T-blocks," *IEEE Trans. Microwave Theory Tech.*, vol. 50, no. 10, pp. 2368-2373, Oct. 2002.