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Abstract

TE plane-wave scattering from finite rectangular grooves in a conducting plane is sys-
tematically analyzed with the overlapping T-block method. Multiple rectangular grooves are
divided into several overlapping T-blocks to obtain the fast CPU time, CAD applicability,
and wide versatility. The scattered fields are obtained in simple closed forms including a
fast-convergent integral.

1 Introduction

TE plane-wave scattering from finite rectangular grooves in a conducting plane is a fundamental
problem and has been extensively studied [1-5]. In the present work, we introduce a novel approach
based on the overlapping T-block method for the scattering from finite rectangular grooves in
a conducting plane. The dispersion analysis [6] of overlapping T-blocks are extended to the
scattering analysis of finite rectangular grooves. The main advantage of the overlapping T-block
method is that scattering relations of finite rectangular grooves are obtained as simple closed
forms without the need of the integral equation technique [1,2]. The overlapping T-block method
allows us to obtain a simple yet numerically efficient series solution including a fast-convergent
integral.

2 Field Analysis of a Single Groove

Consider a rectangular groove with the TE plane-wave incidence shown in Fig. 1. The time-factor
e~ is suppressed throughout. The incident and reflected E, fields are shown as, respectively,

Ei(z,y) = expliky(sin iz — cosby)] (1)
El(z,y) = —explike(sinb;x + cosb;y)] (2)

where ky = w,/a€2 = 2w /Ay and 6; is an incident angle of the TE plane-wave. In regions (I)
(—d <y < 0) and (II) (y > 0), the E, components are

El(x,y) = il Pm Sin ap (x + a) sin &, (y + d) [u(m +a) —u(x — a)] (3)
Eo) = 3 posin(ud)[Ba(ay) + R(.0) ()
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Figure 1: Geometry of rectangular groove.

where a,, = mn/(2a), & = k2 — a2, ki = wy/er = 27/, and u(-) is a unit step function.
Based on the radiation condition and the E!(z,y) component, we represent E,,(z,y) in (4) as

En(z,y) = €"™Ysina,(r + a) [u(x +a) —u(r — a)] (5)

where 1, = /k3 — a2,. By utilizing the Green’s function relation in [6] and deforming the integral
path, we obtain the fast-convergent integral as

katm [ (1 + 2vi)nsin(ny) Clo—al _ i
5 B 9 m i¢|lz—a i¢lz+a
Rm(ﬂf,y) — - A C(C2—a%n) [(_1) e | |_e |+‘] dv
I (kay/( Py sinap, (¢’ + a) da’ — E,(z,y) (6)
2 Joa (v — 2)2 4y

where 1 = kyv(v — i) and ¢ = 1/k3 — n?. The total electric field is, therefore, given as

When p = /2?2 + y2 — 00, (4) becomes

6i(k2p—7r/4) o0
EM(p,0) ko cos0 Y pusin(&,d) Fy, (—ko sin 6; a) (8)

V2mkop —

where 6 = tan™'(z/y).
3 Field Analysis of Multiple Grooves

It is possible to apply the overlapping T-block approach to the geometry of multiple rectangular
grooves shown in Fig. 2(a). We first divide the multiple grooves in Fig. 2(a) into several overlap-
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Figure 2: Geometry of (a) multiple rectangular grooves and (b) overlapping T-blocks.

ping T-blocks as shown in Fig. 2(b), thus facilitating the CAD applicability. The superposition
procedures are utilized in [6]. The E, fields of Fig. 2(a) are represented as

= i T (x — T™ y) 9)

n=1

where T = 0 and N is the number of grooves.

4 Numerical Computations

To understand the scattering characteristics of finite rectangular grooves, we define a backscattered
echowidth as

2

EM(p,0)
Ei(p.0) (10

o = plgg)?ﬂp ‘

Table 1 represents the behaviors of a normalized backscattered echowidth versus an incident
angle, ;. It is seen that our higher-mode solutions (m = 5, 7) converge to the more higher modes
(m =9, 11). A dominant-mode solution is quite accurate only near to the normal incidence.
Beyond 6; = 30°, higher-mode solutions (m = 5, 7) should be used to compute the backscattered
echowidth. Fig. 3 illustrates the E,(z,y) field continuity to verify our approach.
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Table 1: Behaviors of normalized backscattered echowidth, o /Ay [dB] versus incident angle, 6; for
a = ]_.]_)\0, d= 1.6)\0, and )\1 = )\2 = )\0.

Angle  m=1 m=3 m=5 m=7 m=9 m=9
0° 14.64 1537 1532 1531 1531 15.31
30° | -12.11  7.73 8.07 8.08 8.09 8.10
60° | -43.43 -8.54  9.36 9.28 9.26 9.24

Figure 3: F,(z,y) field distributions for 6; = 0°, a = 1.1\, d = 1.6y, and Ay = Ay = A
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