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1 Statement of the Problem
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Fig. 1: Geometry of a lamellar grating under
consideration.

Let us consider plane wave diffraction by a
lamellar grating ruled on a substrate schemat-
ically shown in Fig. 1. The grating grooves are
parallel to the z-axis, and the direction of pe-
riodicity is parallel to the x-axis. We denote
the grating period by d, the grating depth
by h, and the groove width by g. We con-
sider time-harmonic fields, assuming a time
dependence in exp(−i ω t), and the fields are
therefore represented by complex vectors de-
pending only on the space variables x, y, and
z. A plane wave is assumed to be incident
in the plane of incidence perpendicular to the
z-axis, and the incident angle is denoted by θ.
The substrate under consideration is a linear isotropic medium with the refractive index ns and
the permeability of free space, and the cover region is assumed to be free space.

This is a fundamental problem and many approaches have been proposed. One of the
most commonly used approaches is the differential theory [1] because of its simplicity and
wide applicability. The electromagnetic field components are pseudo-periodic functions, and
they can be approximately expanded in truncated generalized Fourier series. Replacing all the
periodic and pseudo-periodic functions by their Fourier series, the Maxwell equations yield a
coupled differential equation set (CDES) for the Fourier coefficients of field components. The
electromagnetic fields outside the groove region can be approximately expressed by the truncated
Rayleigh expansions, and therefore the solution obtained inside the groove region is matched to
the Rayleigh expansions at the top and the bottom of the grooves. This theory is very powerful
and efficient for many types of grating. However, gratings that is deep and made of conducting
materials cause problems because of the poor convergence. The origin of the difficulty, which was
explained by Li [2], is the Fourier factorization rules applied to derive the CDES. He suggested
three Fourier factorization rules and many papers have showed their validity.

However, Popov et al. [3] have recently discovered problems with use of silver and gold
gratings in the near-infrared region even when the CDES is derived based on Li’s Fourier
factorization rules. The refractive index of gold reaches the value 0.1 + i 10 in the near-infrared
region, and the real part of the value decreases for shorter wavelength. Figure 2 shows numerical
results of a highly conducting grating made of artificial substrate with ns = 0 + i 10. The
−1st-order diffraction efficiencies are computed by using the rigorous coupled-wave method
(RCWM) [4, 5] as function of the groove width g. The grating parameters are same as Ref. [3]:
d = h = 500 nm, λ0 = 632.8 nm, θ = 30◦, and TM polarized (H-field is parallel to the z-axis)
incident plane wave. We use the truncation order N = 15 that determines the number of

PROCEEDINGS OF ISAP2005, SEOUL, KOREA

- 845 -

POS-C-15 

ISBN: 89-86522-78-0   94460    KEES

PROCEEDINGS OF ISAP2005, SEOUL, KOREA



0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

–
1
st

-O
rd

er
 E

ff
ic

ie
n
cy

Groove Width g [nm]

Fig. 2: −1st-order diffraction efficiency of a
lamellar grating with refractive index of the
material ns = 0 + i 10 as a function of the
groove width g for the following parameters:
d = h = 500 nm, λ0 = 632.8 nm, θ = 30◦,
N = 15, and TM incident plane wave.
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Fig. 3: Condition number of the Toeplitz ma-
trices [[ε]] and [[1/ε]] as a function of the groove
width g. All parameters are same as in Fig. 2.

Fourier coefficients (equal to 2N + 1), and the efficiencies are computed for 1001 values of the
groove width from 10 nm to 490 nm with identical intervals. The RCWM is a variant of the
differential theory, in which the CDES is solved as an eigenvalue problem. Unfortunately, Popov
et al. did not describe their computation procedure properly and it is impossible to obtain the
same results. The RCWM procedure used in this paper is presented in Ref. [6], and then the
numerical results in Fig. 2 are some different from those in Fig. 3(a) of Ref. [3]. Anyway, we
observe similarly many unphysical artifacts due to numerical instability.

Let ε(x) denote the relative permittivity distribution inside the groove region 0 < y < h.
Also, [[ε]] and [[1/ε]] denote (2N + 1) × (2N + 1) Toeplitz matrices generated by the Fourier
coefficients of ε(x) and 1/ε(x) in such a way that their (n,m)-entries are the (n −m)th-order
Fourier coefficients. The RCWM based on Li’s Fourier factorization rules requires inversion
calculation of [[ε]] and [[1/ε]]. Popov et al. calculated the condition number of [[ε]] (though they
showed reciprocal values by mistake) and explained that its inversion calculation produces the
numerical artifacts. Figure 3 shows estimated values of the L1 condition number of the Toeplitz
matrices [[ε]] and [[1/ε]] computed as function of the groove width g for the same parameters
as Fig. 2. The condition numbers become certainly larger than 103 for many values of the
groove width and sometimes go as large as 105. However, it is difficult to say that the inversion
calculations are the direct reason of the numerical artifacts because the values in Fig. 2 are
obtained by double-precision computation. Additionally, the positions of numerical artifacts do
not agree with those with large condition number.

2 Stability of CDES Solvers with Large Truncation Order
It is well know that large truncation order is required in the analyses of conducting gratings.

However, numerical experiments in Fig. 2 may abandon to overflow when the truncation order
N is larger than 40. Trouble comes from the accumulation of contamination linked with growing
exponential functions when the field is computed over the entire groove region. A simple way
to get rid of this problem is to use the scattering-matrix propagation algorithm (SMPA) [7, 8].
The groove region 0 < y < h is decomposed into M layers so that the thickness of each layer is
small enough to avoid the instability. Then, the scattering-matrix for the entire region can be
derived by recursive calculation of the transmission matrices of the layers. Figure 4 shows the
−1st-order diffraction efficiencies of the same grating as Fig. 2, but computed by the RCWM
with the help of SMPA for N = 100 and M = 100. It is observed that number of the numerical
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Fig. 4: Same as in Fig. 2, but computed by
the RCWM with SMPA for N = 100 and
M = 100.
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Fig. 5: Same as in Fig. 2, but computed by the
DM-IMS with SMPA for N = 100, M = 100,
and ∆y = h/100.

artifacts is less than that in Fig. 2 though those amplitudes are much larger. This fact means
that one reason of the numerical artifacts in Fig. 2 is simply due to the small truncation order
but there exist other difficulties lying behind.

As written before, the RCWM solves the CDES as an eigenvalue problem. But there is
another method that solves the CDES and obtains the transmission matrix of each layer with the
help of numerical integration algorithms. In the narrow sense, this numerical integral approach
is called the differential method (DM). This approach usually uses an explicit integration scheme
to solve the CDES. However, the explicit integration schemes tend to be less stable for larger
truncation order, and it has been known that the DM with the implicit integration scheme
provides much more stable numerical computation [8]. The −1st-order diffraction efficiencies of
the same grating as Fig. 2 are computed by the DM based on the implicit midpoint scheme (DM-
IMS) with the help of SMPA and plotted in Fig. 5. The parameters for numerical computation
are chosen as N = 100, M = 100, and the step thickness ∆y = h/100 for the IMS. Clearly,
the DM-IMS is much more stable than the RCWM though there still remain a small number of
numerical artifacts.

3 Extrapolation Approach
Hosono and Yamaguchi [9] applied the homogeneous multilayer approximation method to

a lossless plasma slab in which permittivity is continuous and has both positive and negative
values, and pointed out a difficulty due to numerical stability. They estimated the transmission
and the reflection coefficients using the extrapolation technique with assuming loss terms. This
problem is recently studied by Yamasaki et al. [10,11] using the Fourier series expansion method,
and validated also the extrapolation technique. The grating under consideration is lossless, and
the permittivity inside the groove region has both positive and negative values though it is given
by discontinuous function of x. Of course, the differential theory of gratings has to introduce
truncation for practical computation, and then the permittivity distribution is approximated
by a truncated Fourier series giving a continuous function. Consequently, the origin of the
numerical instability is thought to be same as the difficulty of lossless plasma slab.

Here, the extrapolation technique is applied to estimate the efficiencies of lossless gratings.
Assuming the real part of refractive index <(ns), the grating becomes lossy. The efficiencies
calculated by the DM-IMS with SMPA for M = 100, ∆y = h/100, and various truncation orders
N are plotted as a function of <(ns) in Fig. 6. The parameters are same as Fig. 2 but the groove
width is fixed to g = 151.6 nm that gives a large artifact as pointed by arrow in Fig. 5. Some
unphysical behaviors are observed for <(ns) < 0.2, but reasonable results are obtained in the
other range. The efficiencies of lossless grating are estimated by the quadratic extrapolation
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Fig. 6: Efficiency of the grating with g =
151.6 nm as function of <(ns). The results
are computed by the DM-IMS with SMPA
with M = 100, ∆y = h/100, and various N .
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Fig. 7: Same as in Fig. 5, but estimated by
quadratic extrapolation with assuming lossy
substrate of <(ns) = 0.2, 0.25, 0.3.

and plotted in Fig. 7. The efficiencies are calculated at <(ns) = 0.2, 0.25, 0.3 by the DM-IMS
with SMPA with N = 100, M = 100, and ∆y = h/100. The results show great improvements
in numerical stability and numerical artifacts appeared in Fig. 5 are completely suppressed and
good agreement with those of the rigorous modal method given in Fig. 3(b) of Ref. [3].
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