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1 Introduction

Open-ended coaxial lines have been extensively used to estimate the permittivity and perme-
ability of dielectric materials since its estimation method is relative accurate, simple, and non-
destructive. Techniques to measure the permittivity and permeability with coaxial lines require
the insertion of a material sample between coaxial lines. Reflection and transmission behavior of
a dielectric material inserted between two coaxial lines can be used to estimate the permittivity
of a dielectric material. Scattering from a dielectric slab material between aligned two-port
flanged coaxial lines has been analyzed [1] where the distance between the centers of coaxial
lines is zero. The purpose of the present paper is to investigate scattering from a dielectric slab
between nonaligned two-port flanged coaxial lines where the distance between centers of coaxial
lines is nonzero. The technique of mode matching and Hankel transform [1, 2] is used in this
paper to evaluate scattering from a dielectric slab between non-aligned two-port flanged coaxial
lines. Only TM-modes will be considered with the assumption that the fields inside the coaxial
line have no azimuthal ¢-variation. The assumption of no azimuthal ¢-variation substantially
simplifies the problem formulation. Some computation is performed to check the validity of our
formulation as well as its applicability to the problem of permittivity estimation.

2 Field Analysis

The problem geometry is shown in Fig. 1 where two coordinate systems, p and p’, are used for
each coaxial line. The inner and outer radii of the coaxial line are a and b, respectively. The
permittivity and permeability of the dielectric material between a and b are € and i, respectively.
Regions (I) and (III) denote the coaxial line interior (a < p <b, 2 <0) and (a < p' <b, z > d),
respectively. Region (II) denotes the dielectric slab (0 < z < d). The wavenumbers for region
(I) and (III) are & = w,/pe , and the wave number for region (II) is k; = w/f1€1 . Assume a
TEM wave is incident from below a coaxial line in region (I). It is reasonable to assume that the
scattered field in a coaxial line can be represented in terms of TEM and TM modes if the radius
of the coaxial line is small compared with the wavelength and the distance r between the center
of two coaxial lines is large compared with the diameter 2b (r > 2b). The field in region (I)
consists of incident and reflected waves. The reflected wave consists of a TEM wave and higher
order TMy, waves. Then the field in region (I) is
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FiG. 1: Structure and geometry

where 1 = \/E ke = V=&, Ril€up) = JEp)No(Eb) — N1(€up)Jo(Enb), and ¢, s the

unknown modal coefficient. Similarly, the field in region (III) can be expressed as
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where [,, is the modal coefficient. The field in region (II) is a superposition of scattered fields
from regions (I) and (III). The field in region (II) can be represented as
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where k = \/k3 — (2.

To determine the unknown coefficients ¢, I,, H(¢), H (), ﬁ’+(C), and H'™ (¢), six boundary
conditions are necessary. The tangential electric field continuities at p = 0, z = d and p/ = 0,
z =0 give

() — (e =0 (4)
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Applying Hankel transform / (1)J1(¢p)p dp to the continuity of tangential electric field at z = 0
0

yields
A0 - (O] = H2 [k(l LRSS m] (©)
n=1
where
I, = Jo(Ca) — Jo(Cb) (7)

¢
—Jo(¢b) Jo(€na) + Jo(Ca)Jo(€nd)
an(@ - fq%)JO(fna) '

-830-

I, = 2




Similarly, the continuity of the tangential electric field at z = d gives

ﬁ/—i_(C) - ﬁ/_(C)} = N;Zl [kZOIO + /i i lnkzIn] . (9>
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The continuity of tangential magnetic field at z = 0 for a < p < b requires

HY(p,0) = H]! (10)
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Substituting H*(¢), H (), ﬁ’+(C), and H' (¢) into (10) and manipulating the expressions
gives a set of simultaneous equations for the discrete modal coefficients ¢,, and lg, I, l2, - - -,
ln,.. Similarly, the continuity of magnetic field at z = d for a < p’ < b gives another set
of simultaneous equations for the discrete modal coefficients. The explicit expressions for the
simultaneous equations for the discrete modal coefficients are available in [3].

3 Numerical Computations

To examine the validity of our formulation, numerical simulations have been performed. Figures
2(a) and 2(b) depict the comparison between our results and the simulated results of CST-MWS
when r > 2b and r < 2b, respectively. Figure 2(a) shows that our solutions agree well with the
simulated result of CST-MWS when the cross sections of two open-ended coaxial lines do not
overlap (r > 2b). Figure 2(b) shows that the discrepancies exist between our results and the
simulated result of CST-MWS when the cross sections of two open-ended coaxial lines overlap
(r < 2b). The discrepancies for r < 2b is attributed to the fact that our theory approximately
assumes no field variation in the azimuth ¢ direction within the coaxial line. When r < 2b, the
fields within the coaxial line tends to become nonuniform in the azimuthal direction and higher
order modes other than TMy, modes are necessary for accurate field representation.

4 Conclusion

An approximate theory to estimate the reflection and transmission of nonaligned flanged coaxial
lines is numerically investigated. Our theoretical model assumes no field variation in the ¢-
direction utilizing only TEM and TMy, modes. The analysis technique is based on the Hankel
transform and mode matching. Our solutions agree well with the simulated result of CST-MWS
when the cross sections of two open-ended coaxial lines do not overlap (r > 2b). When the cross
sections of two open-ended coaxial lines overlaps (r < 2b), an exact full-wave formulations using
TE and TM modes is required for accurate calculation.
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F1G. 2: The components of |S1;| and |Sa1| as functions of frequency with b=38.404mm, b/a=2.3,

d=1.8mm, e=1, ¢;=2.04, pu, p1=1. The dotted lines denote simulated value of CST-MWS and
the solid lines denote theoretical predictions. (a) : r = 100mm, (b) : r = 20mm

-832-



