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1 Introduction

Open-ended coaxial lines have been extensively used to estimate the permittivity and perme-
ability of dielectric materials since its estimation method is relative accurate, simple, and non-
destructive. Techniques to measure the permittivity and permeability with coaxial lines require
the insertion of a material sample between coaxial lines. Reflection and transmission behavior of
a dielectric material inserted between two coaxial lines can be used to estimate the permittivity
of a dielectric material. Scattering from a dielectric slab material between aligned two-port
flanged coaxial lines has been analyzed [1] where the distance between the centers of coaxial
lines is zero. The purpose of the present paper is to investigate scattering from a dielectric slab
between nonaligned two-port flanged coaxial lines where the distance between centers of coaxial
lines is nonzero. The technique of mode matching and Hankel transform [1, 2] is used in this
paper to evaluate scattering from a dielectric slab between non-aligned two-port flanged coaxial
lines. Only TM-modes will be considered with the assumption that the fields inside the coaxial
line have no azimuthal φ-variation. The assumption of no azimuthal φ-variation substantially
simplifies the problem formulation. Some computation is performed to check the validity of our
formulation as well as its applicability to the problem of permittivity estimation.

2 Field Analysis

The problem geometry is shown in Fig. 1 where two coordinate systems, ρ and ρ′, are used for
each coaxial line. The inner and outer radii of the coaxial line are a and b, respectively. The
permittivity and permeability of the dielectric material between a and b are ε and µ, respectively.
Regions (I) and (III) denote the coaxial line interior (a ≤ ρ ≤ b, z ≤ 0) and (a ≤ ρ′ ≤ b, z ≥ d),
respectively. Region (II) denotes the dielectric slab (0 ≤ z ≤ d). The wavenumbers for region
(I) and (III) are k = ω

√
µε , and the wave number for region (II) is k1 = ω

√
µ1ε1 . Assume a

TEM wave is incident from below a coaxial line in region (I). It is reasonable to assume that the
scattered field in a coaxial line can be represented in terms of TEM and TM modes if the radius
of the coaxial line is small compared with the wavelength and the distance r between the center
of two coaxial lines is large compared with the diameter 2b (r > 2b). The field in region (I)
consists of incident and reflected waves. The reflected wave consists of a TEM wave and higher
order TM0n waves. Then the field in region (I) is

HI
φ(ρ, z) =

eikz

ρ
+ c0

e−ikz

ρ
+

1
µ

∞∑

n=1

cnkzR1(ξnρ)e−ikzz (1)
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Fig. 1: Structure and geometry

where η =
√

µ

ε
, kz =

√
k2 − ξ2

n, R1(ξnρ) = J1(ξnρ)N0(ξnb) − N1(ξnρ)J0(ξnb), and cn is the

unknown modal coefficient. Similarly, the field in region (III) can be expressed as

HIII
φ (ρ′, z) = l0

eik(z−d)

ρ′
+

1
µ

∞∑

n=1

lnR1(ξnρ′)eikz(z−d) (2)

where ln is the modal coefficient. The field in region (II) is a superposition of scattered fields
from regions (I) and (III). The field in region (II) can be represented as

HII
φ =

1
µ1

∫ ∞

0

[
H̃+(ζ)eiκz + H̃−(ζ)e−iκz

]
J1(ζρ)ζ dζ

+
1
µ1

∫ ∞

0

[
H̃ ′+(ζ)eiκ(z−d) + H̃ ′−(ζ)e−iκ(z−d)

]
J1(ζρ′)ζ dζ (3)

where κ =
√

k2
1 − ζ2.

To determine the unknown coefficients cn, ln, H̃+(ζ), H̃−(ζ), H̃ ′+(ζ), and H̃ ′−(ζ), six boundary
conditions are necessary. The tangential electric field continuities at ρ = 0, z = d and ρ′ = 0,
z = 0 give

[
H̃+(ζ)eiκd − H̃−(ζ)e−iκd

]
= 0 (4)

[
H̃ ′+(ζ)e−iκd − H̃ ′−(ζ)eiκd

]
= 0. (5)

Applying Hankel transform
∫ ∞

0
(·)J1(ζρ)ρ dρ to the continuity of tangential electric field at z = 0

yields
[
H̃+(ζ)− H̃−(ζ)

]
=

µ1ε1
κε

[
k(1− c0)I0 − 1

µ

∞∑

n=1

cnkzIn

]
(6)

where

I0 =
J0(ζa)− J0(ζb)

ζ
(7)

In = 2ζ
−J0(ζb)J0(ξna) + J0(ζa)J0(ξnb)

πξn(ζ2 − ξ2
n)J0(ξna)

. (8)
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Similarly, the continuity of the tangential electric field at z = d gives

[
H̃ ′+(ζ)− H̃ ′−(ζ)

]
=

µ1ε1
κε

[
kl0I0 +

1
µ

∞∑

n=1

lnkzIn

]
. (9)

The continuity of tangential magnetic field at z = 0 for a < ρ < b requires

HI
φ(ρ, 0) = HII

φ

∣∣∣
z=0

. (10)

Substituting H̃+(ζ), H̃−(ζ), H̃ ′+(ζ), and H̃ ′−(ζ) into (10) and manipulating the expressions
gives a set of simultaneous equations for the discrete modal coefficients cn, and l0, l1, l2, · · · ,
ln.. Similarly, the continuity of magnetic field at z = d for a < ρ′ < b gives another set
of simultaneous equations for the discrete modal coefficients. The explicit expressions for the
simultaneous equations for the discrete modal coefficients are available in [3].

3 Numerical Computations

To examine the validity of our formulation, numerical simulations have been performed. Figures
2(a) and 2(b) depict the comparison between our results and the simulated results of CST-MWS
when r > 2b and r < 2b, respectively. Figure 2(a) shows that our solutions agree well with the
simulated result of CST-MWS when the cross sections of two open-ended coaxial lines do not
overlap (r > 2b). Figure 2(b) shows that the discrepancies exist between our results and the
simulated result of CST-MWS when the cross sections of two open-ended coaxial lines overlap
(r < 2b). The discrepancies for r < 2b is attributed to the fact that our theory approximately
assumes no field variation in the azimuth φ direction within the coaxial line. When r < 2b, the
fields within the coaxial line tends to become nonuniform in the azimuthal direction and higher
order modes other than TM0n modes are necessary for accurate field representation.

4 Conclusion

An approximate theory to estimate the reflection and transmission of nonaligned flanged coaxial
lines is numerically investigated. Our theoretical model assumes no field variation in the φ-
direction utilizing only TEM and TM0n modes. The analysis technique is based on the Hankel
transform and mode matching. Our solutions agree well with the simulated result of CST-MWS
when the cross sections of two open-ended coaxial lines do not overlap (r > 2b). When the cross
sections of two open-ended coaxial lines overlaps (r < 2b), an exact full-wave formulations using
TE and TM modes is required for accurate calculation.
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Fig. 2: The components of |S11| and |S21| as functions of frequency with b=38.404mm, b/a=2.3,
d=1.8mm, ε=1, ε1=2.04, µ, µ1=1. The dotted lines denote simulated value of CST-MWS and
the solid lines denote theoretical predictions. (a) : r = 100mm, (b) : r = 20mm
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