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1 Introduction

When a body is embedded in a random medium, the radar cross-section (RCS) of the body may be
remarkably different from that in free space. This special phenomenon is called backscattering enhance-
ment, and has been one of the important subjects for radar engineering, remote sensing, astronomy and
bioengineering. Backscattering enhancement has been investigated from an academic point of view[1–
3] and thereby been said to be a fundamental phenomenon in a random medium and to be produced by
statistical coupling of incident and scattered waves. If the body is regarded as a single point and the
backscattering enhancement occurs prominently, RCS of the body has generally been taken to be nearly
twice as large as that in free space.

On the other hand, when the average scattered intensity is enhanced in the backward direction, it is
possible to predict that the intensity decreases in the neighborhood of the backward direction from the
law of energy conservation and the statistical independency of scattered waves at points separated widely
from each other[1].

To make clear numerically the prediction as well as the RCS characteristics for a practical body
scattering, we analyzed a bistatic RCS of a conducting body in a random medium. Our approach[4, 5]
is based on general results of both independent studies on the surface current on a conducting body in
free space and on the wave propagation and scattering in a random medium. A non-random operator,
called current generator, is introduced to get the surface current from any incident wave. The operator
depends only on the body surface and can be constructed by Yasuura’s method. On the other hand, the
wave propagation in a random medium is expressed by use of Green’s function in the medium. Here,
a representative form of the Green’s function is not required but the moments are done for the analysis
of average quantities concerning observed waves. We apply a two-scale asymptotic procedure[3, 6] to
get the fourth moment of Green’s functions. As a result, we have obtained numerically results agreed
with the law of energy conservation, and shown some interesting behaviors of bistatic RCS caused by
statistical coupling between incident and scattered waves[7, 8, 10].

Above numerical results are limited to E-wave incidence. Here, to investigate effects of the polariza-
tion of incident wave on the bistatic RCS, we assume H-wave incidence under the same situation as used
for E-wave incidence and calculate numerically the RCS.

2 Formulation

Consider a two-dimensional problem of electromagnetic wave scattering from a perfectly conducting
circular cylinder embedded in a continuous random medium, as shown in Fig.1. Here L is the thickness
of the random medium surrounding the cylinder and is assumed to be larger enough than the size of the
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cylinder cross-section. The random medium is assumed to be described by the dielectric constant ε, the
magnetic permeability µ and the electric conductivity σ, which are expressed as

ε = ε0[1 + δε(r)] , µ = µ0 , σ = 0 , (1)

where ε0, µ0 are constant and δε(r) is a random function with

〈δε(r)〉 = 0 , (2)

〈δε(r1) · δε(r2)〉 = B(r1 − r2) . (3)

Here the angular brackets denote the ensemble average and B(r1 − r2) is the correlation function of the
random function. For numerous cases, it can be approximated as

B(r1 − r2) = B0 exp
[
−|r1 − r2|2

l2

]
, (4)

B0 � 1 , kl � 1 , (5)

where B0, l are the intensity and scale-size of the random medium fluctuation, respectively, and k =
ω
√

ε0µ0 is the wavenumber in free space. Under the condition (5), depolarization of electromagnetic
waves due to the medium fluctuation can be neglected; and the scalar approximation is valid. In addition,
the forward multiple scattering approximation is valid, and hence the backscattering by the random
medium becomes negligible. In the present analysis, consequently we do not need to consider the re-
incidence of backscattered waves by the random medium on the cylinder[4, 5].

Suppose that the current source with the time factor exp(−jωt) suppressed throughout this paper is
a line source, located at rT, far from and parallel to the cylinder. Then the incident wave is expressed by
Green’s function in a medium containing the random medium and free space G(r, rT) whose dimension
coefficient is understood. Using the current generator Y that transforms any incident wave into the
surface current on the cylinder, we can give the average intensity of scattered waves us for H-wave
incidence as follows [4, 5]:

〈|us|2〉 =
∫

S
dr1

∫
S

dr2

∫
S

dr′
1

∫
S

dr′
2

{
Y (r1; r′

1)Y (r2; r′
2)

∂

∂n1

∂

∂n2

〈
G(r; r1)G(r′

1; rT)G∗(r; r2)G∗(r′
2; rT)

〉}
, (6)

where S denotes the cylinder surface, ∂/∂ni (i = 1, 2) does the outward normal derivative at ri on S, and
the asterisk the complex conjugate. The Y can be calculated by Yasuura’s method[4, 5] and expressed in
an infinite series for a circular cylinder[9]:

Y (r; r′) =
j

kπ2a2

∞∑
n=−∞

exp
{
jn(θ − θ′)

}
Jn(ka)

{
∂H

(1)
n (ka)/∂(ka)

} (7)

where Jn is the Bessel function of order n and Jn(ka) �= 0; that is, the internal resonance frequencies
are excepted. The H

(1)
n is the Hankel function of first kind.

The fourth moment of Green’s functions in (6) can be written as

〈G(r; r1)G(r′
1; rT)G∗(r; r2)G∗(r′

2; rT)〉 =
G0(r; r1)G∗

0(r; r2)G0(r′
1; r1T)G∗

0(r
′
2; r2T) · ms , (8)

where G0 is Green’s function in free space[2]. The ms includes multiple scattering effects of the random
medium and can be obtained by two-scale method [3, 6–8]; as a result, it is

ms =
k

2πz

∫ ∞∫
−∞

dηdρ exp
{
−jk

z
η[ρ − (x − xT)]

}
P (ρ, η) , (9)
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where

P (ρ, η) = exp
{
−
√

πk2lz

8

∫ L/z

0
dt

(
D[a(sin θ′1 − sin θ′2)t + ηt]

+D[a(sin θ1 − sin θ2)t + ηt]
−D[a(sin θ′1 − sin θ1)t − ρ(1 − t) + ηt]
−D[a(sin θ′2 − sin θ2)t − ρ(1 − t) − ηt]
+D[a(sin θ′1 − sin θ2)t − ρ(1 − t)]

+D[a(sin θ′2 − sin θ1)t − ρ(1 − t)]
)}

, (10)

D(x) = 2B0

[
1 − exp

(
−x2

l2

)]
. (11)

3 Numerical results

We calculated the bistatic RCS of a conducting circular cylinder (ka = 1) with different parameters of
the random medium by using (6), and illustrated the numerical results to study the effects.

In Fig.2, the bistatic RCS σ is shown as a function of β for three cases of kl: kl = 20π, 2000π and
5000π, where the fluctuation intensity and thickness of the random medium are fixed at B0 = 5 × 10−7

and kL = 8 × 104π, respectively. For all the three cases, σ tends to that in free space σ0 if β is large
enough, and the integral value of σ with respect to β is equal to that of σ0. This fact means that the
results agree with the law of energy conservation.

In the case of kl = 2000π, the oscillation of σ becomes a wonted shape (refer to [7, 8, 10]): there
are a backscattering enhancement peak where σ becomes about 2.6 times as large as σ0 and a depression
outside the peak where σ is less than σ0. In the cases of kl = 20π and kl = 5000π, σ at β = 0 are almost
equal to σ0, which means there is almost no backscattering enhancement. We know that the effect of
multiple scattering becomes weak as the scale-size increases, because the number of multiple scattering
in a random medium becomes smaller with an increase in scale size, when the random medium thickness
is fixed. It is easy to understand that the effect of backscattering enhancement in the case of kl = 5000π
is less than that in the case of kl = 2000π, but the problem of how to explain the case of kl = 20π still
remains to be solved.

We note that the RCS in the case of kl = 20π displays a complicated behavior with increasing β. It is
depressed in the neighborhood of backward direction, and enhanced just outside the depression. The en-
hancement extends to a wider region although the peak is not so high. This result hints that the scattering
enhancement phenomenon may occur not just in the backward direction but in the other directions. To
estimate the effect of multiple scattering from the contribution to bistatic RCS, we calculate the variance
of σ from

1
0.06

∫ 0.06

0

(
σ − σ0

σ0

)2

dβ (12)

for the three cases. The results become 6.9 × 10−2, 4.1 × 10−2 and 6.0 × 10−3 for cases of kl = 20π,
kl = 2000π and kl = 5000π, respectively. The fact shows that the effect of multiple scattering on RCS
reduces with increasing kl.

As well known, both σ and σ0 depend on the polarization of incident wave: however, σ/σ0 for H-
wave incidence is almost the same as obtained for E-wave incidence because the spatial coherence length
of incident wave at the cylinder is much larger than the size of the cylinder.

4 Conclusion

We discussed the scattering characteristic of a conducting circular cylinder embedded in a random
medium by changing the scale-size of the medium. The numerical results of bistatic radar cross-section
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(RCS) show that sometimes the scattering enhancement phenomenon may not occur in the backward
direction but in the other directions, where a scattering depression region may exist in the neighborhood
of backward direction and scattering enhancement may be observed outside the depression region. The
region of the enhancement may be much wider than that of the well known backscattering enhancement,
although the enhancement peak is not so high. The complicated oscillation of bistatic RCS is considered
to be caused by statistical interference of incident and scattered waves. For all numerical results, the in-
tergral value of the bistatic RCS with respect to β is almost equal to that in free space, which fact shows
that the results agree with the law of energy conservation.

References

[1] Y.A.Kravtsov, and A.Saichev: “Effect of double passage of waves in randomly inhomogeneous
media”, Sov. Phys. Usp., Vol.25, pp.494-508(1982).

[2] Y.M.Lure, C.C.Yang, and K.C.Yeh: “Enhanced backscattering phenomenon in a random cotin-
uum”, Radio Science, Vol.24, pp.147-159 (1989).

[3] R.Mazar: “High-frequency propagators for diffraction and backscattering in random media”, J.
Opt. Soc. Am. A, Vol.7, pp.34-46 (1990).

[4] M.Tateiba, and E.Tomita: “Theory of scalar wave scattering from a conducting target in random
media”,IEICE Trans. on Electronics, Vol.E75-C, pp.101-106 (1992).

[5] M.Tateiba, and Z.Q.Meng: “Wave scattering from conducting bodies embedded in random media
— theory and numerical results”, in PIER 14: Electromagnetic Scattering by Rough Surfaces and
Random Media, ed M.Tateiba, and L.Tsang, EMW Pub, Cambridge, pp.317-361 (1996).

[6] R.Mazar, and A.Bronshtein: “Double passage analysis in random media using two-scale random
propagators”, Waves in Random Media, Vol.1, pp.341-362 (1991).

[7] Z.Q.Meng, N.Yamasaki, and M.Tateiba: “Numerical analysis of bistatic cross-sections of con-
ducting circular cylinders embedded in continuous random media”, IEICE Trans. on Electronics,
Vol.E83-C, pp.1803-1808 (2000).

[8] M.Tateiba, and Z.Q.Meng: “Radar cross-sections of conducting targets surrounded by random me-
dia” (invited paper), IEICE Trans. on Electronics, Vol.J84-C, pp.1031-1039 (2001) (in Japanese).

[9] M.Tateiba, and Z.Q.Meng: “Infinite-series expressions of current generators in wave scattering
from a conducting body”, Research Reports on Information Science and Electrical Engineering of
Kyushu University, Vol.4, pp.1-6 (1999).

[10] M.Tateiba, Z.Q.Meng and H.El Ocla: “Scattering by Conducting Bodies in Random Media” (in-
vited paper), IEEJ Trans. FM, Vol.124, pp.1094-1100 (2004).

a o

uin

us

Transmitter

Receiver
Random medium

Conducting
cylinder

z L β

x

Free space

Fig.1 Geometry of the scattering prob-
lem from a conducting cylinder sur-
rounded by a random medium.
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Fig.2 Bistatic RCS (σ) of the cylinder in
random media with different scale-
sizes and that in free space (σ0) .
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