Hei ght Scanni ng Aver agi ng Nethod for Free Space Antenna Factors of EM Antenna

Jung-Kuy Park, Jin-Wbok Han, Dong- Chan Jeong, G-NamCha and Hong- Nam Go
I cheon Branch Institute of Radi o Research Lab.,
Mini stry of Infornati on and Conmani cation
370 9, Si npil-ri, Seol sung nyeon, I cheor- si, Gyeonggi- do, 467-881,
Republic of Korea
E-nail: jkpark@rl.go.kr

1 Introduction

The aSPR^{11} has been di scussing calibration nethods of EM antennas for yielding free space antenna factors. In general, EM Antennas are neasured at an OATS where AUC is strongly affected by el ectronægnetic reflected wave on ground plane. Hence, there have been studied several nethods to get free space antenna factors. In this paper, Hei ght Scanni ng Aver agi ing (HSA) Nethod is described, which has the reflected wave techni cally elimnated in order to yield free space antenna factors. The HSA formol a having a similar formto Friis equation is derived and it is simel ated that the method is hardly affected by mot ual inpedance between antennas. It is shown that the results of conparison neasurenents with HSA and Standard Antenna Nethod used by National Institute of Conmani cation and Technol ogy(N CT : old CPL) in Japan have a good agreenent.

2 Theory of HSA

Antenna factor AF is defined as

$$
\begin{equation*}
A F=E / V_{0} . \tag{1}
\end{equation*}
$$

The antenna factor is deternined by one of the following tho categories or the mixed: Category 1 : Attenuati on neasurenent between ant ennas

Category 2: Neasurenents of el ectric field and recei ved vol tage.
Standard Site Nethod ${ }^{[2]}$ is usual ly incl uded in the first category and Standard Antenna nethod ${ }^{[3]}$ in the second category. It can be said that the HSA is contai ned in Category 1 The HSA base on the following Friis free space transmissi on equation ${ }^{[4]}$ in dB,

$$
\begin{equation*}
G_{t}(d B)+G_{r}(d B)=20 \log 4 \pi d / \lambda+10 \log P_{r} / P_{t} . \tag{2}
\end{equation*}
$$

We begin with the geonetrical optics 2 ray nodel ${ }^{[5]}$ to derive the HSA formal a. In general, it gives the following expression for the electric field generated by a si mple source situated over a ground pl ane as shown in Fig. 1:

$$
\begin{equation*}
E_{r}=\sqrt{30 G_{t} P_{t}}\left(e^{-\mu_{d}} / d+|\rho| e^{-\mu r} e^{h} / r\right) \tag{3}
\end{equation*}
$$

where d is a direct distance between two antennas, $r=\sqrt{d^{2}+4 h^{2}}$ is a path of the reflected wave bet ween the antennas having the sane hei ght h.

Fig. 1. Setup of HSA

Fig. 2. Mëchanism of HSA measurement

An antenna fact or $A F_{r}$ of recei ved antenna has rel ation with its gai $n G$:

$$
\begin{equation*}
A F_{r}(d B / m)=10 \log 480 \pi^{2} / Z_{L} \lambda^{2}-G_{r} \quad(\mathrm{in} \mathrm{~dB}) \tag{4}
\end{equation*}
$$

where $A F_{r}$ is the factor of a recei ved antenna, Z_{L} is the input impedance of a neasuring recei ver and G is the gai n of a recei ved ant enna.
The recei ved power is al so gi ven by

$$
\begin{equation*}
P_{r}=|V|^{2} / Z_{L}=|E|^{2} / Z_{L} A F_{r}^{2} \tag{5}
\end{equation*}
$$

Fromthe equations (4) and (5), The following rel ationshi pis gi ven by

$$
\begin{equation*}
E_{r}(d B V / m) \equiv 20 \log \left|E_{r}\right|=10 \log P_{r}+10 \log 480 \pi^{2} / \lambda^{2}-G_{r}(d B) \tag{6}
\end{equation*}
$$

In Fig. 2, if electric field intensity $E_{n}(d B V / m)$ at nth hei ght fromground according to equations (3) and (6) is aver aged fromn=1 to N, then HSA formal a is expressed as

$$
\begin{equation*}
\overline{G_{R}(d B)}+\overline{G_{r}(d B)}=20 \log -\frac{4 \pi d}{\lambda}+\overline{10 \log -\frac{P_{r}}{P_{f}}}+\frac{1}{N} \sum_{n=1}^{N} 20 \log \left|1+\left|\rho_{n}\right|-\frac{d e^{-j \mu\left(r_{n}-\infty\right)} e^{i \|}}{r_{n}} \cdot\right| \tag{7}
\end{equation*}
$$

where $\bar{G}(d B)$ neans a arithnetic aver age of N functions $10 \log G_{n}$ having hei ght dependency, that is, $\bar{G}(d B)-1 / N \sum_{N=1}^{N} 10 \log G_{N}=10 \log \langle G\rangle$, and $\langle G\rangle$ is a geonetrical aver age gi ven by $\langle G\rangle=\left(G_{1} G_{2} \cdots G_{N}\right)^{1 / N}$ for the val ues G_{h} at respective hei ght h_{n}. The equation (7) has a formthat the last termof itself is attached at the Friis equation (2). We call the I ast termof (7) a interference aver agi ng. If the I ast term is 0 dB or nearly OdB , the HSA is identical to measurement in free space or quasi free space.

3. Theoretical and Experiment al Investigations

Scanning Ranges

Measur enent ranges al ong hei ght have to let a difference between the naxi mom and mini nom path of the reflected wave be nore than at least one wavel ength λ in or der to have sufficiently an effect of averaging, that is, $r_{\max }-r_{\min }=\sqrt{d^{2}+4 h_{\max }^{2}}-\sqrt{d^{2}+4 h_{\min }^{2}} \geq \lambda$.
In the case of 30 MHz , the hei ght is about 8.8 m , when $h_{1}=1 \mathrm{~m}$ and $\mathrm{d}=10 \mathrm{~m}$
Hei ght Pattern of Attenuations
Attenuations between antennas depend on their hei ght fromground as described in the equation (7). The measurenent of attenuations used two Bi Log(CBL6111B) was perforned with an hei ght increnent of 1 cmfrom 1 mto 5.6 m at frequency 300 MHz , whi ch result is shown in Fig. 3. The hei ght aver aging of attenuation is 25.53 dB , whi ch is consi dered as a val ue of quasi free space.

Fig. 3 Height Pattern of Attenuations Fig. 4 Height pattern of Averaging at 300MHz

Interference Aver agi ng Term

The last term of the equation (7) is cal cul ated by the sof tware MATHENATICA. The si noll ation of hei ght pattern at 300 MHz is shown in Fig. 4, which the averaging is -0.198 dB . Fig. 5 shows how long the interference aver aging val ues in (7) are from free space havi ng 0 dB in ranging 30 MHz to $\mathbb{1} H \mathrm{~Hz}$, where the si moll at i on is cal cul at ed at hei ght rangi $n g 1 \mathrm{ml} 8.8 \mathrm{~m}$ on a perfect conducting ground.

Fig. 5 deflection from free space(OdB) 30MHz to 1GHz

Fig. 6 Mutual Impedance

Matual I npedance
Horizontally polarized antennas exhi bit antenna to antenna and antenna to ground mot ual coupl ing bel ow approxi nately 100 MHt . The ant enna terninal i mpedance change due to close proximinty coupling between the transnint and recei ve antennas as well as the antenna to-ground coupling can be nodel ed using a two port nodel ${ }^{[6]}$. In Fig. 6, the rel ati onshi ps are gi ven by

$$
\begin{align*}
& V_{1}=\left(Z_{11}-Z_{13}\right) I_{1}+\left(Z_{12}-Z_{14}\right) I_{2} \\
& V_{2}=-Z_{L} I_{2}=\left(Z_{12}-Z_{14}\right) I_{1}+\left(Z_{22}-Z_{24}\right) I_{2} . \tag{8}
\end{align*}
$$

In the case of the dipol es which neasurenent setup is equal to Fig. 6, the self and mot ual i mpedance related to the integrals, $G(x)$ and $S(x)^{[7]}$ are easily si nol ated by NATHEATICA. Antenna factor for the dipole at a hei ght h_{n} fromground by using the tho optical ray nodel and the motual i npedance rel ations can be expressed as

$$
\begin{equation*}
A F_{n}=\frac{60 I_{1}}{Z_{L} I_{2} d} e^{-j k d}+\frac{-60 I_{1}}{Z_{L} I_{2} r_{n}} e^{-j k r_{n}}+\frac{-30 I_{2}}{Z_{L} I_{2} h_{n}} e^{-j k k_{n}} . \tag{9}
\end{equation*}
$$

Hei ght pattern of antenna factors at 30 NHtz is shown in Fig. 7. If h_{n} is infinite, which is the condition of free space, then, the antenna factor is 51.3247 dB . The effect of reflected wave, the 2nd term of (9), is 0.7731 dB and the effect due to re radi ating of recei ved antenna, 3th term of (9) is 0.0007 dB according to HSA.

simulation of eq. (9)'s all term
averaging : 52.1095 dB
Fig. 7 Height pattern of factor due to mutual impedance effect at 30 Mtz

4. Neasurenents

Hei ght Patterns of attenuations and factors

Sone neasurenent results carried out on OATS having $50 \mathrm{~m} \times 60 \mathrm{~m}$ conducting ground are show in Fig. 8. The di stance between antennas is 10 m , and, in the case of 30 Mtr , the increnent of hei ght is 10 cmfrom 1 mto 5.6 m and $300 \mathrm{Mtt}, 7 \mathrm{cmi}$ ncrenent from 1 mto 4 m AUC is Schwar zbeck D pol e 757.

Fig. 8 Height patterns and antenna factors due to averaging at 30 MHt and 300 MHt

Conpari son of HSA with Standard Antenna Nethod

Antenna factors neasured by HSA and SAM are conpared in Fig. 11 The Standard

Antenna utilized by the SAM is NCT standard di pole antenna, which antenna fact ors are accur at el y cal cul at ed. Neasurenent is carried out at 14 wavel ength from 30M1tz to 1 GHz. AUC are Anritsu di pol e MP652B(30 200MHz) and Schwar zbeck di pol e 713 (3000 1000MHz). The results are productions of co-comparison work of PRL and NCT's antenna neasur enent in 2004.

Fig. 11 Comparison with HSA and $2 \mathrm{~m} / 3 \mathrm{~m}$ height SAM

5. Concl udi ng Renarks

The neasurenent nethod to determine free space antenna factor on OATS by Hei ght Scanning Aver agi ng Method has been studied theoretically and experinentally. The paper derives the HSA formol a similar to Friis equation, surveys the effect of mot ual i npedance and shows the hei ght pattern neasurenent of attenuations and factors. The paper al so shows the compari son results of neasur enent bet ween HSA, and SAM nade use of by NCT. Most of antenna factors show a good agreenent within 1 dB except 30MItz. The reason having sone devi ation at 30 MHz is because the scanning hei ght is currently I imited to 5.6 m and, as mentioned above, the least scanning at 30 MHz is 8.8 m Nbw , a 10 m hei ght antenna nast which is possi ble to scan al ong the vertical is under const ruction in RRL. The HSA usi ng st andard ant enna al so requi res further st udy.

Acknow edgenent

The authors would like to acknow edge the staffs of EMC Measurenent Group, Wrel ess Conmuni cations Department, NCT in Japan who have cooper ated in measuring the antennas.

Ref er ence

[1] QSPR $161-5$ "Radi o disturbance and immonity neasuring apparatus - Antenna calibration test sites for 30 MHz to $1000 \mathrm{MHz"}$ First edition, Nbv. 2003
[2] ANS C63.51988 "Anerican National Standard for Calibration of Antennas used for Radi at ed Ennissi on Neasurenents in Eectro nægnetic Interference(EM) control "
[3] CanelI, D.G, Larsen E.B., Ouz J.E. "NBS calibration procedures for horizon dipole antennas (25 to 1000 MHzz) " Hat. Bur. St and. (U. S.), Tech. Nbte 1309. April 1987.
[4] H T. Friis, "A note a si mpl e transmissi on formal a", Proc. I PE. . pp. 254] 256, Nay 1946.
[5] Janes M MLean, Gentry Orook, Zhong Chen, Hei nrich Foltz, "Measurenent of the Antenna Fact or of Diverse Antenna Usi ng a Nodi fied Standard Si te Method" I EEE, pp. 595660, 1999.
[6] T. Kamana and S. Myajinm, "Theoretical investigations of site attenuation by neans of mot ual i npedance bet ween antenas", in 3rd synp. Techni cal Exhi bit. ECC, (Rotterdan), pp. 8388. Nay 1879.
[7] Constantine A. Bal ani s, "Antenna Theory : Analysi s and Design" John Wel ey \& Sons, pp. 2831321, 1982

