
A NEURAL-NETWORK-BASED BLIND BEAMFORMING ALGORITHM 
 

Dan Tian, Jin-Kuan Wang, Yan-bo Xue, and Zhi-Gang Liu 
School of Information Science and Engineering 

 Northeastern University 
Shenyang，110004，China 

E-mail: dtian@mail.neuq.edu.cn 
 
 
 

1. Introduction 
Beamforming, as a key technology in array signal processing, is widely used in the field of radar, 

sonar and communication. Conventional beamforming algorithms, such as the minimum-variance 
distortionless response (MVDR) and the recursive least square (RLS), are based on linear algebra. 
While these algorithms require time-consuming matrix inversion computation, are not practical for 
real-time implementation, and are sensitive to the accuracy of the knowledge of the steering vector, 
which restrain their applications in practical conditions. Neural network possesses strong fault-tolerant 
capability, generalization capability, and massive parallelism. It can be readily implemented in analog 
VLSI or optical hardware, or be implemented on special purpose massively parallel hardware. Many 
kinds of neural network models have been successfully used in beamforming [1], such as multilayer 
perceptron network [2], Hopfield network [3], radial-basis function neural network (RBFNN) [4], 
principal component analysis network [5] and fuzzy neural network [6]. In this paper, a fast 
beamforming algorithm is presented based on the strong numerical approximation, optimization and 
regularization capabilities of the RBFNN. Because this algorithm needn’t know the quality of signal and 
channel, and the knowledge of the signal steering vector, it is a blind beamforming algorithm. 
 
2. Signal Model 

Consider a uniform linear array (ULA) with M  omnidirectional sensors spaced by the 
distance d , and K  narrow-band incoherent plane waves impinging from directions 0 1 2 1, , ,... Kθ θ θ θ − . 
The observation vector is given by 

0( ) ( ) ( ) ( ) ( ) ( ) ( )k s k k k k k k= + + = + +n nX a i s i                    (1) 
where 1 2( ) [ ( ), ( ),..., ( )]TMk x k x k x k=X  is the complex vector of array observations, 0( )s k  is the signal 
waveform, a  is the signal steering vector, ( )ki  and ( )kn  are the interference and noise components, 
respectively. The output of a narrowband beamforming is given by 

( ) ( )Hy k k= W X                                   (2) 
where 1 2[ , ,..., ]TMw w w=W is the complex vector of beamformer weights, and ( )T⋅ and ( )H⋅ stand for the 
transpose and Hermitian transpose, respectively.  

The weight vector can be found from the maximum of the signal-to-interference-plus-noise 
ratio (SINR) 

H
s

HSINR =
i+n

W R W
W R W

                                (3) 

where { ( ) ( ) }HE k k=sR s s , {( ( ) ( ))( ( ) ( )) }HE k k k k= + +i+nR i n i n . 
 
3. Weight Vector Estimation 

  Taking MVDR beamformer as an example, we introduce a classical weight vector estimation 
algorithm. In this algorithm, to derive the optimal weight vector, the array output is minimized so that 
the desired signal is received with specific gain, 0( ) 1Hw a θ = , while the contributions due to noise and 
interference are minimized. Then the optimum weight vector is given by the following equation 

1
0

1
0 0

( )
( ) ( )

xx
opt H

xx

R aw
a R a

θ
θ θ

−

−=                              (4) 

where [ ( ) ( ) ]H
xxR E x t x t=  is the correlation matrix of the received signals. Since the above equation is 

- 649 -

PROCEEDINGS OF ISAP2005, SEOUL, KOREAPOS-A-20 

ISBN: 89-86522-78-0   94460    KEES



not practical for real-time implementation, an adaptive algorithm must be used to adapt the weights of 
the array in order to track the desired signal and to place nulls in the directions of the interfering signals. 
 
4. Neural Blind Beamforming 

  In (4), to solve the optimum weight vector, time-consuming matrix inversion computation is 
required. Consider the neural network has parallel architecture, and its training phase and performance 
phase can be separated. In this paper, the neural network is used to solve this problem. The optimum 
weight vector is a nonlinear function of the correlation matrix [see Eq. (4)]. Note that a radial basis 
function neural network can approximate an arbitrary function from an input space of arbitrary 
dimensionality to an output space of arbitrary dimensionality. This network model is used to implement 
the mapping from correlation matrix to the weight vector. 
A. The RBFNN Model  

The radial-basis function network is a special three-layered feedforward network, which consists 
of the input layer, the output layer, and the hidden layer, and is shown in Figure1. 

 

 

 
 

 

 
Assume that the input layer, the hidden layer, and the output layer have , ,N L M  nodes 

respectively. Gaussian functions are selected as radial-basis function, the network output vector is given 
by 

2

2
( )

,
1

( 1, , )l

x c lL

m l m
l

u e m Mσω
−

=

= =∑                            (5) 

where 1 2[ , , , ]Nx x x x=  is the input vector to the network, ( )c l and 2
lσ  are the mean and standard 

deviation of the l th Gaussian function, , ( 1, , ; 1, , )l m l L m Mω = =  is the weight value from the m th 
node in the output layer to the l th node in the hidden layer. Training samples are divided into L  
classes by K -mean learning algorithm, ( )c l  is the l th clustering center vector, and 2

lσ  is the average 
distance to the first few nearest neighbors of the means of the other Gaussian functions. 
B. Generation of Training Data 

  To reduce the learning space, the redundant information in the input vector of the network 
should be eliminated, and the information related to the DOA of the sources should be extracted. The 
elements in covariance matrix are given by 

* 2
1 1

[ ] exp{ 2 [( 1)sin ( 1)sin ]}
M M

ml m l ik k i ml ni k
R E x x P j fd l mπ θ θ δ σ

= =
= = − − − +∑ ∑         (6) 

where *( )⋅  denotes the complex conjugate , mlδ  is the Kronecker delta and *[( )]ik i kP E s s=  denotes the 
source correlation matrix. By exploiting the symmetry in correlation matrix, one need only consider 
either the upper or lower triangular part of the matrix [7]. In this paper, the upper triangular half of R is 
used. From (6), 2

1
M

mm i niR P σ== +∑  does not carry any information on the position of the signal sources. So 
an L(L-1)/2 component vector can be constructed as network input  

12 13 1 23 2 ( 1),[ , , , ; , , ; ; ]L L L Lz R R R R R R −= … … …  

  Since in practical application the power levels received at both mobile stations and 
basestations are kept at the same level by full power control, we normalize the input to unify the 
parameter space /z z z

∨
= , where ⋅  is the Euclidean norm. 

  To simplify the generation of the training data, in this paper, a new network mapping 
relationship is defined 

Fig. 1. Architecture of a three-layer RBFNN 

 

1x  

Nx

2x  

1u

2u

Mu

1z

2z

3z

Lz

- 650 -



1
0 0( )xxw R a θ−=                                     (7) 

Then the network can be trained with examples of input-output pairs 0{( , ); 1,2, , }
l

l
Tz w l N

∨
= , 

where TN  is the number of the training pairs. In the one-dimensional array, sources are located at 
elevation angels θ  ranging from 90−  to 90+  to span the field of view of the antenna. Consider the 
condition of a single signal, and the learning resolution of θ  as 1 , then 181 input-output pairs can be 
obtained. Compared to (4), the new mapping defined in this paper saves massive computation given by 
the following equation 

0optw wα=                                      (8) 

where 1
0 01/ ( ) ( )H

xxa R aα θ θ−= .                             
C. Network Output Post-Processing and Network Testing 

In testing phase, input pre-processing method is the same as that of in training phase, i.e. both of 
them generate the network input vector z

∨
. Present z

∨
 at the input layer of the trained RBFNN, the 

output layer of the trained RBFNN will produce, as an output, the estimation of 0w . To obtain the 
estimation of the optimum weight for the array output, the following post-processing is required 

*
0

0 0

1( )opt H
xx

w w
w R w

=                                 (9) 

Unlike the least mean-square, recursive least squares, or the sample matrix inversion algorithms, 
where the optimization is carried out whenever the directions of the desired or interfering signals change, 
in our approach, the weights of the trained network can be used to produce the optimum weights needed 
to steer the narrow beams of the adaptive array to the directions of desired users. 

 
5. Simulation Results 

Some simulations are conducted in this section to verify the proposed method. The sensor 
displacement is taken to be half the wavelength of the signal waves. The pattern of an array of 8 
elements receiving one desired signal that arrives from 20 is shown in Figure 2. The SNR of the 
source is 10 dB with respect to the noise. Figure 3 illustrates the pattern of an array of 10 elements 
receiving a desired signal that arrives from 10 , and two interference that arrive from 0  and 20 . 
The SNR of the sources is 10 dB with respect to the noise. To evaluate the accuracy of the weight 
vector estimation, the network recalling error relative to desired value is given as 

( ) /MVDR NNBF MVDRW W Wε = −  [8], where NNBFW  is the post-processed weight vector estimated by 
neural beamformer. An array of 8 elements receives a single signal sampled from 90−  to 90+ , with 

5θ∆ = . The SNR of the source is 10 dB with respect to the noise. The appropriate degree of the 
weight vectors estimation is shown in Figure 4. 
 
6. Conclusion 

 In this paper, a new beamforming algorithm is presented based on RBFNN. To simplify the 
generation of training data pairs, a new network mapping relationship is defined, which is 
post-processed to approximate Wiener solution. Computer simulations show the high degree of 
accuracy of our approach. Conventional beamforming algorithms require the knowledge of DOA 
estimation, while imprecise information can lead to the degradation of the performance. The algorithm 
presented in this paper is a blind algorithm, which solves the problem. 
                                                          

 

 

 

- 651 -



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
References 
[1] K.-L. Du, A. K. Y. Lai, K. K. M. Cheng, and M. N. S. Swamy, “Neural methods for antenna array signal 

processing:a review,” Signal Processing, vol.82, pp. 547-561, Apr.2002. 
[2] A. B. Suksmono and A. Hirose, “Adaptive beamforming by using complex-valued multiplayer perceptron,” 

ICANN/ICONIP, pp. 959-966, 2003. 
[3] M. Hirari and M. Hayakawa, “Direction of arrival estimation using blind separation of sources,” Radio Sci, 

vol.34, pp. 693-701, Mar.1999. 
[4] Seigiy A. Vorobyov and Andrzej Cichocki, “Hyper radial basis function neural networks for interference 

cancellation with nonlinear processing of reference signal,” Digital Signal Processing, vol.11, pp. 205-221, 
Mar.2001. 

[5] S. Fiori, “A neural minor component analysis approach to robust constrained beamforming,” IEE 
Proceedings - Vision, Image and Signal Processing, vol.150, pp. 205 – 218, Apr.2003. 

[6] F. J. Lin and R. J. Wai, “Hybrid control using recurrent fuzzy neural network for linear-induction motor servo 
drive,” IEEE Trans.Fuzzy Systems, vol.9, pp.102-115, Jan.2001. 

[7] A. H. EI Zooghby, C. G. Christodoulou, and M. Georgiopoulos, “A neural-network-based linearly 
constrained minimum variance beamformer,” Microwave and Optical Technology Letters, vol.21, pp. 
451-455, Jun.1999. 

[8] K.-L. Du, K. K. M. Cheng, and M. N. S. Swamy, “A fast neural beamformer for antenna arrays,” IEEE 
International Conference on Communications, pp. 139-144, April-May 2002. 

Fig. 4. Network recalling error   

Fig. 2. Adapted pattern of an eight-element array

receiving a single signal                

Fig. 3. Adapted pattern of a ten-element array

receiving one desired signal and two interfering 

- 652 -


