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1. Introduction 
In most applications of array processing, source parameter estimation methods are based on 

point source modeling, where it is assumed that the energy arriving at a sensor array originates from 
multiple point sources. In terms of direction finding, this means that the source energy is assumed to be 
concentrated at discrete angles which are referred to as DOAs. Based on this assumption, several 
high-resolution direction finding methods have been proposed to estimate the source DOAs. However, 
in numerous applications such as sonar, radar, and wireless communications, signal scattering 
phenomena may cause angular spreading of the source energy. Hence, in such cases, the distributed 
source model is more appropriate than the point source one[1]. 

Several techniques have been proposed for distributed source parameter estimation, such as the 
maximum likelihood technique[2], the DSPE[3], the DISPARE[4], the covariance matching estimation 
technique[5] and the subspace fitting concept[6] etc. However, some of these methods lead to a 
multidimensional nonlinear optimization problem and others need singular value decomposition, all of 
which require high computational complexity. 

In this paper, a deterministic approach using the first order Taylor series expansion of the 
nominal steering vector of the distributed source is proposed. Then the array manifold consists of a 
linear combination of the nominal steering vector and its gradient. With the assumption of small angular 
spread, we introduce the propagator method(PM) as a possible alternative to MUSIC method for 
distributed source nominal DOA estimation . We find that at high and medium SNR, the PM performs 
quite like MUSIC. At low SNR, the PM outperforms MUSIC. In addition, the PM has reduced 
computational complexity with a least squares process and without any eigenvalue decomposition of the 
covariance matrix of the received signals. 

 
2. Distributed source model 

Consider the case of a spatially distributed source impinging on an ULA. The signal is the 
superposition of all contributions due to local scatterers and can thus be written as 
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where ( )l tγ  is the random complex gain of the point source, the steering vector can be modeled as 
( )( )0 l tθ θ+a , 0θ  is the nominal DOA of the distributed source, ( )l tθ is a zero-mean random angular 

deviation from the nominal DOA, ( )tn is the additive white Gaussian noise. 
 
3. The first order Taylor series expansion of the nominal steering vector 

With the assumption of small angular spread, a Taylor expansion of the steering vector gives                   
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where the complex gain is included and ( )0θd  is the gradient of the steering vector,
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It is reasonable to assume that lγ∑  is non-zero and thus the steering vector can be written as  
 ( ) ( ) ( )0 0iθ θ ρ θ≈ +a a d  (4) 

where ( )i l l ltρ γ θ γ= ∑ ∑ . For small angular spread, iρ  is regarded as small. 

For an ULA with m omnidirectional elements separated by  wavelengths, the steering vector 
and its derivative are  

 ( ) 2 sin 2 ( 1) sin1, , ,
Tj j me eπ θ π θθ − − −⎡ ⎤= ⎣ ⎦a  (5) 

 ( ) 2 sin 2 sin[0, 2 cos , , 2 ( 1)cos ]j j Tj e j m eπ θ π θθ π θ π θ− −= − − −d  (6) 
where the superscript T denotes the transpose of a matrix. Substituting (5) and (6) into (4) , The nth row 
of (4) may now be approximated as 
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So the steering vector can be written as  
 ( ) ( 1)[1, , , ]i ijw j m w Te eθ − − −≈a  (8) 
where ( )0 02 sin cosi iw π θ ρ θ= + . As the angular spread goes to zero, iρ also goes to zero. Then (8) 
reduces to the conventional plane wave steering vector. 
 
4. The PM for the distributed source 

For incoherently distributed source, the noise subspace is generally degenerate(i.e., equal to the 
zero vector) and the whole observation space is occupied by the signal components. In such case, the 
direct application of conventional high resolution array processing methods will produce erroneous 
results.  

In this paper, the PM is applied to distributed source parameter estimation for the first time. The 
PM is a subspace-based method which does not require the eigendecomposition of the covariance 
matrix of the received signals. The use of a partition in the PM to subdivide the whole array into two 
subarrays is a technique that has similarities with ESPRIT[9]. However, the PM presents several new 
features 
1) The two subarrays may be quite different and the only constraint is that the number of sensors          
for one of them should be at least equal to the number of distinct incident wavefronts. 

2) The sensors may be arranged in any order. 
The definition of the PM is based on the partition of the steering vectors(8) according to 
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where 1A  and 2A  are matrices of dimension N N×  and ( )M N N− × , respectively. M  is the 

number of the sensors, N  is the number of distinct incident wavefronts. 
The linear dependence holds between the first N  rows of the steering vector and the others,    

 1 2
H =P A A  (10)            

or
               

 ,H H
M N−⎡ ⎤− = =⎣ ⎦P I A Q A 0  (11) 

where P  is the propagator operator, M N−I  is the identity matrix of dimension ( )M N− , [ ]Hi  
denotes the conjugate transpose of a matrix. The propagator operator depends only on propagation 
parameters, such as those characterizing wavefronts geometry, antenna shape, and sensors complex 
gains, not on the complex amplitudes of the sources. So we introduce the following partition of the data 
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matrix. It can be as follows, 
1) The received data matrix is

              
                

 ( ) ( ) ( )1 2 K= ⎡ ⎤⎣ ⎦X x x x  (12) 
2) The partition of the data matrix is 
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where 1X  and 2X  are matrices of dimension N N×  and ( )M N N− × respectively. 
3) The estimation of the propagator operator can be obtained by minimizing the cost function
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According to (11), the estimation of the nominal DOAs of the distributed sources can be 

obtained by minimizing the follow expression 
               

                              
 ( ) ( )ˆ Hd θ θ= Q A  (16) 
 
5. Simulation Results 

In this section, we provide numerical results to compare the performances of our proposed PM 
with those of MUSIC estimator. We consider an ULA with 8 elements separated by a half wavelength. 

In the first example, it is the case of a single distributed source. This source is assumed to be 
Gaussian azimuthal power distribution with the nominal DOA 5  and angular spread 1.5 . The number 
of snapshots is 500. For angular spread is small, we are interested in nominal DOA. Fig.1 shows the 
one-dimensional spectrum for the nominal DOA estimation. Fig.2 shows the root-mean-squared 
error(RMSE) of the estimation of the nominal DOA versus the SNR. From Fig.2, it is clear that the 
performance of the PM outperforms MUSIC when the SNR is low. For moderate and high SNR, the PM 
performs like MUSIC. So the major advantages of the PM are better performance at low SNR and lower 
computational cost. 
  

    

 

 

 

 

 

 
 
 
 
In the second example, we assume two distributed sources. One of them is Gaussian azimuthal 

power distribution with nominal DOA 3  and angular spread 1.5 . The other source is uniform 
azimuthal power distribution with nominal DOA 8  and angular spread 1.5 . Fig.3 shows the 
one-dimensional spectrum for the nominal DOAs estimation. Fig.4 shows the RMSE of the estimation 
of the nominal DOAs versus the SNR. From Fig.4, when the SNR is low, it is clear that MUSIC can’t 
give the ideal estimation. However, the RMSE of the estimation of the DOAs by the PM is smaller. In 
particular, the performance of the PM is better in uniform azimuthal power distribution. When the SNR 
is getting high, the performance of the PM is close to MUSIC. We can conclude the application of the 
PM is not restricted to the single source case. The sources may have different forms of distribution.  

 

Fig.2.  RMSE of the nominal DOA estimate of a 
single distributed source versus the SNR 

Fig.1.  the nominal DOA estimation of a
single distributed source 
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6. Conclusions 

In this paper, we considered the estimation of the nominal DOA of incoherently distributed 
source with a view to provide the validity of the algorithm at low SNR and lower computational 
complexity. Toward this end, the first order Taylor series expansion of the nominal steering vector of the 
distributed source is applied and the PM is introduced to estimate the nominal DOA. The algorithm 
presents several new features 
1) It does not require the eigendecomposition of the covariance matrix of the received signals. 
2) It has a substantially better performance at low SNR. 
3) It’s applicable to the multisource scenarios with different azimuthal power distribution. 
Simulation figures clearly demonstrate that the PM is shown to be valid at low SNR and consistently 
enjoy a good performance at medium and high SNR as compared with MUSIC. 
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Fig.4.  RMSE of the nominal DOA estimate
of two distributed sources versus the SNR 

Fig.3.  the nominal DOA estimation of two
distributed sources 
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