
FVTD Simulation for One Dimensional Rough Surface Scattering
at Low-Grazing Angle

Kwang-yeol Yoon, Mitsuo Tateiba, Kazunori Uchida*
Department of Computer Science and Communication Engineering,

Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka, 812-8581,Japan
E-mail: yoon@green.csce.kyushu-u.ac.jp, tateiba@csce.kyushu-u.ac.jp

*Fukuoka Institute of Technology, 3-30-1, Wajiro-Higashi,
Higashi-ku, Fukuoka, 811-0295, Japan

E-mail: k-uchida@fit.ac.jp

1. INTRODUCTION
     The electromagnetic wave scattering from a randomly rough surface has been widely studied because of its
great importance in the fields of telecommunications and remote sensing.  Reflection dominates in the high grazing
limit.  However, multiple scattering, shadowing and diffraction, which are difficult to model in theory, have strong
effect on wave scattering in the low grazing limit.  The widely used techniques for simulating the scattering prop-
erties from rough surfaces are small perturbation method (SPM), Kirchhoff Monte Carlo (KMC), integral equation
(IE), and FDTD or FVTD [1 - 7].  The first SPM is limited only to the case where the average height of the rough
surface is much smaller than the wavelength, and the second KMC ignores multiple scattering.  The last IE and
FVTD are numerical methods based on the wave theory.  In this context, numerical methods are well suited to the
rough surface problems in the case of low grazing angle (LGA).  Unfortunately, numerical methods encounter
difficulties in some cases.  The incident wave propagates repeating multiple scattering along the rough surface at
LGA.  In order to simulate the scattering phenomenon accurately, we need a wide range of rough surface that is
much larger than the wavelength.  In a numerical sense, it corresponds to a large number of unknowns to be
determined.  Thus we need a powerful numerical method and much computer memory.
     In this paper, we apply the FVTD method [8] to the wave scattering from dielectric one-dimensional (1-D)
random rough surfaces at LGA.  Numerical results are presented for the randomly rough surfaces of Gaussian type.
First, we calculate the bistatic radar cross sections both for horizontal (hh) and vertical (vv) polarizations.  Second,
we compare the backscattering coefficient of the two different polarizations.  Of particular interest is the ratio of
backscattering between the horizontal and vertical polarizations, because it has been experimentally shown that the
backscattering of vertical polarization is much larger than that of horizontal polarization at LGA [1].  The present
results are compared with those obtained by IE and SPM [2].  In addition, we check the numerical convergence of
FVTD by increasing the number of sampling points per wavelength.  In our numerical simulations, we choose the
sampling points per wavelength up to 80 in space domain.  We also show some numerical results for the rough
surface of length up to 1000 λ , where we choose 20 sampling points per wavelength in the space domain for the
incidence angle between 5 and 10 degrees.
     Numerical results demonstrate that the backscattering ratio of the two different polarizations is smaller than the
predicted value based on the SPM.  The present results are in agreement with the experimental data [1] and those
based on the IE with 20 sampling points per wavelength.  However, it should be noted that we need more sampling
points per wavelength when a better accuracy is required.

2. FVTD FORMULATION
     The geometry of problem is shown in Fig. 1.  In FVTD formulation, the Maxwell equations are discretized on
the basis of the volume integration with respect to a small cell.  In the Cartesian coordinate system FVTD is
equivalent to the conventional FDTD. However, FVTD is more effective to the inhomogeneous electromagnetic
problems than FDTD, because FVTD employs averaged medium constants in each cell [8].  We consider an arbi-
trarily shaped boundary between two different electric and magnetic materials.  One material is denoted by the
constants with 

  
εr1 =

   µr1 =1.0 and 
  σ1 =0, and the other is designated by the constants (

  
εr2 ,

   µr2 ,
  σ2 ).  We assume that

one part of the (i,j)-th cell is occupied by the former material with area S
1
 and the other part is occupied by the latter

material with area S
2
 as shown in Fig. 2.  Then we can approximately evaluate the material constants in the (i,j)-th

cell in an average fashion as follows:

ε′r=
εr1∆S1 +εr2∆S2

∆S , µ′r=
µr1∆S1 +µr2∆S2

∆S , σ′ =
σ1∆S1 +σ2∆S2

∆S
                                           (1)

where

∆S = ∆S1 + ∆S2 =∆x∆y                                                                          (2)
     Now we summarize the FVTD formulations.  For computational reason, magnetic field is normalized by the
intrinsic impedance    Z0 = µ0 / ε0  as   H = Z0H where µ0 and ε0 are permeability and permittivity of the free space,
respectively. Next we assign the averaged dielectric constant    εri, j , electric conductivity    σ i, j in each cell.  Then we
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Fig. 1 Problem geometry including FVTD computation grid.  Fig. 2 Boundary value for arbitrary shaped surface.
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can define the averaged and discretized electric field   En(i, j) in the   (i, j)-th cell and in the n-th time point. Similarly
we have the magnetic field   H n'(i, j) in the n'-th time point where   n' = n – 1 / 2.  With these notations the FVTD
equations for horizontal polarization are expressed as follows [8]:

 Hx
n' + 1(i , j) = Hx

n'(i , j) – Γ y
i, jAi, jYi, j[Ez

n(i , j + 1) – Ez
n(i , j – 1)]                                                       (3)

Hy
n' + 1(i , j) = Hy

n'(i , j) – Γ x
i, jAi, jYi, j[Ez

n(i + 1 , j) – Ez
n(i – 1 , j)]                                                       (4)

                            Ez
n + 1(i , j) = Ωi, jEz

n(i , j) – Γ y
i, jBi, jZ i, j[Hx

n' + 1(i , j + 1) – Hx
n' + 1(i , j – 1)]

+ Γ x
i, jBi, jZ i, j[Hy

n' + 1(i + 1 , j) – Hy
n' + 1(i – 1 , j)]                                         (5)

The FVTD equations for the vertical polarization are expressed as follows [8]:

Hz
n' + 1(i , j) = Hz

n'(i , j) – Γ y
i, jYi, j[Ex

n(i , j + 1) – Ex
n(i , j – 1)] + Γ x

i, jYi, j[Ey
n(i + 1 , j) – Ey

n(i – 1 , j)]       (6)

Ex
n + 1(i , j) = Ωi, jEx

n(i , j) + Γ y
i, jBi, jZ i, j[Hz

n' + 1(i , j + 1) – Hz
n' + 1(i , j – 1)]                                            (7)

Ey
n + 1(i , j) = Ωi, jEy

n(i , j) + Γ x
i, jBi, jZ i, j[Hz

n' + 1(i + 1 , j) – Hz
n' + 1(i – 1 , j)]                                            (8)

The step parameters used above are defined by

Γ x,y
i, j = c∆t

2 εri, j∆x,y
, Ai, j =

1 – exp ( – αmi, j)
αmi, j

, Yi, j = 1
Zi, j

= εri, j

Bi, j =
1 – exp ( – α i, j)

α i, j
, Ωi, j = exp (–α i, j) , α i, j =

σ i, j∆t
ε0εri, j

                                                       (9)

where  ∆x  and  ∆y are the space differences and ∆t is the time difference. Moreover ,    c = 1 / ε0µ0  is the light

velocity in the free space.
     In the FVTD computation we have assumed the incident wave to be a modified Gaussian beam [3] as follows:

Fi(x,y) = exp { – jk inc ⋅ r[1 + w(x,y)] – (x + y cot θ i)
2 / g2}                                             (10)

where

w(x,y) = [2(x + y cot θ i)
2 /g2 – 1] / (kg sin θ i)

2                                                      (11)
 F  is either the  Ez  or  Hz field, depending on the polarization considered.  In (10) theθ

i
 is the incident angle

measured from the horizontal, k inc = k(cos θx + sin θy), and    k = 2π /λ,  where λ is the free space electromagnetic
wavelength. Moreover, the parameter g controls the tapering and the choice of g=L / 8 (except Fig. 3, g=L / 4) gives
an acceptable tapering at the edges [2], where L is the finite surface length.  We must pay much careful attention to
the FVTD analysis when we treat a rough surface of long length compared with the wavelength because of the
finite computer memory.  We have used the PML absorbing boundary condition to reduce the end effect as small as
possible [9].

3. SCATTERING FROM ROUGH SURFACE
     FVTD allows us to compute near field data in the time domain just inside the PML region, and thus the near field
data in the spectral domain are given by performing DFT.  As a result, far field data can be calculated by the
Kirchhoff-Huygense theorem.  Let r  and r’ be the distances from the origin to the observation point (x,y) and to the
equivalent source point (x’,y’) , and γ  be the angle between these two distances.

r = x2 + y2 , r′ = x′2 + y′2 , cos γ =
xx′ + yy′

rr′                                                  (12)

The Green’s function is given by
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G(r) = 1
4 jH0

(2)(κr)                                                                              (13)

where   H 0
(2) is the zero order Hankel function of the second kind, then the far fields can be calculated as follows:

D1 = (n × H) e jkr'cos γds
c

, D1m = – (n × E) e jkr'cos γds
c

                                              (14)

where n is the outward normal at the equivalent source point.  With these relations, the scattered field in a far zone
at a distance r from the center of the illuminated part of the surface can be found as

Hz
s= – jk e– jπ / 4

2 2πk
e– jkr

r (ur × D) , Ez
s = – jk e– jπ / 4

2 2πk
e– jkr

r D                                            (15)

where  H s is for vertical polarization, or  Es is for horizontal polarization, and     D = (ur × D1 + D1m)× ur , where ur

is the unit vector in the r-direction.
The bistatic normalized radar cross section (NRCS)    σ0(θ i,θs) is defined by [4] as follows:

σ0(θ i,θs) = lim
r → ∞

2πr Fs 2

Fi(x,0)
2
dx                                                                   (16)

where Fs is given by (15), and Fs=   H s
 for vertical polarization, and Fs=   E s

 for horizontal polarization.  The
backscattered NRCS is    σ0(θ i,θs) = cos θ i γ0(θ i,θs)  .  The scattering coefficient  γ0  is defined in terms of the projected
area of the incident wave [10]:

γ0(θ i,θs) = lim
r → ∞

2πr Fs 2

cos θ i Fi(x,0)
2
dx  .                                                            (17)

Thus we have

σ0(θ i,θs) = cos θ i γ0(θ i,θs) .                                                                   (18)

For the random rough surface the NRCS is averaged over an ensemble of finite surface realizations to obtain an
ensemble average of NRCS <   σ0(θ i,θs) >.  According to the computational procedures described above, we can
obtain the scattered far fields for two different polarizations,    σ(hh)

0  and    σ(vv)
0 , for one rough surface profile.  Then we

can calculate the averaged backscatter cross sections of the horizontal and vertical polarizations as follows:

R(hh / vv) =
< σ (hh)

0 >
< σ (vv)

0 >                                                                          (19)

4. NUMERICAL RESULTS AND DISCUSSION
In this section, we present the numerical results of bistatic scattering and backscattering coefficients for differ-

ent incidence angle as well as for different polarization.  At L band (1.43GHz), the material constants are chosen as

  
εr2 =10.8, 

   µr2 =1.0 and 
  σ2 =0.106 (S/m) [2].  In this paper, we have assumed the Gaussian type of random rough

surfaces with rms height as h=0.2λ , and correlation length as cl=0.6λ .
     In Fig. 3, we check the numerical convergence by changing the number of sampling points per wavelength from
20 to 320, where the polarization is horizontal, and incident angle is selected as 10 and 45 degrees. This result
indicates that more than 80 sampling points per wavelength should be used when accurate numerical results are
needed.  In Fig. 4, we demonstrate the numerical convergence with respect to surface length in case of horizontal
polarization at the incident angle of 5 degrees.  The surface length is selected as 200, 500, and 1000 λ for 50
randomly generated Gaussian surfaces.  The two results of 500 and 1000 λ are in agreement except at forward
scattering, but much difference is observed for 200 λ.  As a result, it is necessary to select the surface length to be
more than 500 λ at LGA.
     In Fig. 5, we plot the backscattering coefficients both for horizontal and vertical polarizations at six incident
angles between 5 and 10 degrees.  The surface length is chosen as 500 λ and the IE results are also plotted
(triangles) [2].  The two results are in good agreement when 20 sampling points per wavelength are chosen.  To
ensure numerical accuracy, we have also selected 80 sampling points per wavelength and observed much difference
between 20 and 80 sampling points per wavelength.  Unfortunately, the IE solution with 80 sampling points is not
available at present.
     Lastly, the ratio between horizontal and vertical backscattering is plotted in Fig. 6.  It is demonstrated that 20
sampling points per wavelength is enough for calculating the ratio, even though the backscattering coefficients
themselves are different from those calculated by using 80 sampling points as shown in Fig. 5.  It is worth nothing
that the SPM gives much larger ratio than the present numerical results.

5. CONCLUSIONS



Fig. 3 Comparison of the variation of backscattering coefficients
with respect to the number of sampling points per wavelength.

Fig. 5 Comparison of the variation of backscattering coefficients
between FVTD and IE analysis at low-grazing angles.

Fig. 6 Ratio of backscattering coefficient between vertical and
horizontal polarizations.

Fig. 4 Average bistatic normalized radar cross section and con-
vergence with respect to surface length.
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     In this paper, we have numerically analyzed the electromagnetic wave scattering from random rough surfaces
by using FVTD method and then shown that the present method yields a reasonable solution even at LGA.  The
numerical results indicate that the vertical backscattering is larger than the horizontal one at LGA, and their ratio
increases as the incident angle approaches near grazing.  It should be noted that the number of sampling point per
wavelength should be increased not only when more accurate numerical results are required but also when the
relative permittivity is increased.
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