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1 Introduction

The detection of a water content of moist soil is an important problem in civil and agricultural
engineering. Moist soil is composed of air, soil particles, bound water and free water[1] and may
be regarded as a dense random medium from a theoretical point of view. A radiative transfer
equation called dense medium radiative transfer equation(DMRT) has been derived from a wave
equation with the Quasi Crystalline Approximation with Coherent Potential(QCA-CP) and
the ladder approximation[2] to analyze the wave propagation and scattering in a dense random
medium. Under these approximations, the random medium is assumed to be a homogeneous
medium with the effective dielectric constant evaluated by QCA-CP in Rayleigh scattering
region, and the scattering coefficient and the extinction rate in the DMRT are closely related
to the effective dielectric constant. Another method for evaluating the effective dielectric
constant has been presented by one of the authors [3], which method is called “our method”
in this paper. It has been shown that our method is physically valid for scatterers of high
dielectric constant like water drops where QCA-CP becomes invalid[4]. We have shown that
the scattering cross section of a random medium is fairly dependent on the effective dielectric
constant when using a radiative transfer equation[5].

This paper considers a three layer model, composed of air, moist soil layer and bottom
layer for developing a method for detecting a water content of soil by active remote sensing.
The moist soil layer is assumed to be a random medium with spherical water drops embedded
in a homogeneous background medium. A radiative transfer equation with the parameters
evaluated by our method is used in the medium to calculate the scattering cross section of the
moist soil layer by changing the fractional volume of water drops and the incident angle and
polarization of incident waves. From the numerical results, we discuss the detection possibility
of the water content in this approach.
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Figure 1: Geometry of the problem of wave scat-
tering from a layer of discrete random medium.

Let us consider a layer of εgε0 and thick-
ness d (region 1) where identical dielectric
spheres of εsε0 and radius a are embedded,
layer which is over a semi-infinite layer of
ε2ε0(region 2) and under air ε0(region 0),
as shown in Fig.1. A polarized electromag-
netic plane-wave is incident on region 1 from
region 0 in the direction of (π − θ0i, φ0i).
The second moment of waves in a random
medium obeys the Bethe-Salpeter equation
in general. By applying the ladder approxi-
mation, the Bethe-Salpeter equation can be
reduced to a DMRT. The DMRT in region
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1 is written as, for 0 ≤ θ ≤ π,
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where I(θ, φ; z)=[Iv, Ih, U, V ]t is the Stokes vector, in which the superscript t denotes trans-
position. P̄ (θ, φ; θ′, φ′) is a 4 × 4 matrix, called phase matrix which describes the relation
between the incident Stokes vector in the direction (θ′, φ′) and the scattered one in the direc-
tion (θ, φ), and is assumed to be the Rayleigh phase matrix[6] in this paper. Here κe and κs

are the extinction rate and the scattering coefficient, respectively, and closely related to the
effective dielectric constant of a random medium εeffε0.

On the other hand, the effective propagation constant K(= K ′ + jK ′′) in the random
medium can be expressed as

K2 = k2εeff = k2
g + n0c (2)

where k and kg, respectively, are the wave number in free space and of the background medium,
and n0 denotes the distribution density of spheres. The parameter c, which shows the multiple
scattering effects on K, has been given by our method[4]:
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Here k2
d = k2

s − k2
g , and V0 is the volume of a sphere and, ks the wave number of a sphere, f

the fractional volume of spheres and ke0 is defined by the following equation[7]:
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where σ is the variance of random replacement of spheres from a regular distribution. In
Eq.(1), κe and κs, respectively, are given as

κe = 2K ′′, κs =
n0|c|2
6π

(1− f)4

(1 + 2f)2
. (5)

The reflection and transmission angles at the boundaries are assumed to obey Snell’s law
for K ′ because K ′ � K ′′. The boundary conditions for the Stokes vector at z = 0 and −d are
as follows: for 0 ≤ θ ≤ π/2,

I(π − θ, φ; 0) = T̄ 01(θ0) · I0i(π − θ0, φ0; 0) + R̄10(θ) · I(θ, φ; 0)

I(θ, φ;−d) = R̄12(θ) · I(π − θ, φ;−d)
(6)

where I0i(π − θ0, φ0; 0) is the Stokes vector of the incident plane-wave from region 0. R̄ij(θ)
and T̄ ij(θ), i, j = 0, 1, 2 denote the reflection and transmission matrices for the Stokes vector
at the propagation from region i to j with incident angle θ.

The scattered Stokes vector I0s(θ0s, φ0s; 0) = [Iv0s, Ih0s, U0s, V0s]t in the direction (θ0s, φ0s)
is expressed as

I0s(θ0s, φos; 0) = T̄ 10(θs) · I(θs, φs; 0), (7)

When we assume that an α-polarized wave intensity Iα0i(π−θ0i, φ0i; 0) is incident on the random
medium in the direction (π − θ0i, φ0i) and a β-polarized wave intensity Iβ0s(θ0i, π + φ0i; 0) is
scattered in the backward direction (θ0i, π+φ0i), then the backscattering cross section σβα(θ0i)
is defined as

σβα(θ0i) = 4π
cos θ0iIβ0i(θ0i, π + φ0i; 0)

Iα0i
, (8)

where α, β =vertically(v) or horizontally(h).



3 Numerical Results

Water drops are lossy in microwave region[1]. Therefore the scattering effect in the random
medium becomes small, which means that the ladder approximation used here is valid and
then the backscattering enhancement can be neglected. Moreover we can use the iterative
solution up to the second order as an efficient solution. The validity of the solution was also
proved by the directly numerical analysis of Eq.(1). The physical parameters are assumed to
be the operating frequency ν = 2 GHz, εg = 3.0 and a = 1mm, and the dielectric constant of
water drops εs is calculated from Debye’s equation[1]. Fig.2 shows σβα as a function of f when
θ0i = 13.7 degree, ε2=εeff and d=100, 200 and 500cm. The σβα behaves as a convex function of
f for three cases of d. Fig.3 depicts the effect of bottom layer on σβα by assuming ε2 = εeff(no
reflection) and ε2 = ∞(total reflection). For f < 0.05, the multi-reflection of waves due to
upper and lower boundaries increases the σβα for total reflection case. The contribution of
bottom layer to σvv and σhh is smaller than that to σhv and σvh because the co-polarized wave
intensity depends mainly on the first order solution. From these results, σβα has a common
property that it first increases to a certain level and then decreases as f becomes large. It
means that we cannot determine f directly from the measurement of σβα because there are
two values of f corresponding to one value of σβα.

The ratio of σvv to σhh is illustrated in Fig.4 when θ0i=13.7, 33.7 and 53.7 degree and
ε2 = εeff. Fig.4 shows that σvv/σhh is more sensitive to larger incident angles. Fig.5 shows the
σvv/σhh as a function of f when d = 100, 200 and 500 cm, ε2 = εeff and ∞ and θ0i = 53.7
degree. We can observe that there is a one-to-one correspondence between σvv/σhh and f at
f > 0.05, which means that the measurement of σvv/σhh is applicable to sensing of the soil
moisture at f > 0.05. The threshold value of f , at which σvv/σhh becomes independent of the
bottom layer, becomes small for large d.

4 Conclusion

We have assumed a moist soil model as a random medium layer sandwiched between free
space and a homogeneous bottom space and numerically evaluated scattering cross sections of
the layer by using a dense medium radiative transfer equation(DMRT). A multiple scattering
method applicable to scatterers of high dielectric constant has been used to estimate the
parameters in the DMRT. The detection possibility of a water content of soil has been discussed
by using the characteristics of the scattering cross section as functions of the incident angle
and polarization of incident waves and the water content. We found out that the ratio of co-
polarized backscattering cross section between both cases of vertical and horizontal polarization
incidence has a one-to-one correspondence to a volumetric water content larger than 0.05.
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Figure 2: The backscattering cross section σβα as a function of the fractional volume f , when
ν=2 GHz, a=1 mm, εg= 3.0, ε2 = εeff, d = 100,200,500 cm, θ0i=13.7 degree, for both cases:
(a) v-polarized wave intensity incidence and (b) h-polarized wave intensity incidence.
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Figure 3: The backscattering cross section σβα as a function of the fractional volume f , when
ν=2 GHz, a=1 mm, εg= 3.0, ε2 = εeff and ∞, d=100cm, θ0i = 13.7 degree, for both cases: (a)
v-polarized wave intensity incidence and (b) h-polarized wave intensity incidence.
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Figure 4: The ratio of σvv to σhh as a function
of the fractional volume f , when ν=2 GHz,
a= 1 mm, εg = 3.0, ε2 = εeff, d = 100 cm, θ0i

= 13.7, 33.7, 53.7 degree
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Figure 5: As Fig.4, but with ε2 = εeff,∞,
d=100, 200, 500cm and θ0i = 53.7 degree.


