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1. Introduction
The backscattering enhancement was found out in theory and experiment as a fundamen-

tal phenomenon in a random medium, which is produced by statistical coupling of incident and
backscattered waves due to the effect of double passage. In general, the problem of wave scat-
tering by a body in a random medium needs to be treated by taking account of the boundary
conditions of incident and scattered waves on the body. However conventional methods devel-
oped in free space are not directly applicable to the analysis of this problem, because the incident
and scattered waves are random functions. Recently, a method has been presented for solving
the problem as a boundary value problem by introducing an operator named current generator,
which transforms incident waves into surface currents on the body surface and depends only
on the body[1]. The scattered waves are obtained with Green’s function in a random medium
and the current generator. Note that the Green’s function is a random function and that the
statistical coupling of incident and scattered waves means a statistical coupling of the Green’s
functions. In other words, under the condition that the forward scattering approximation is
valid, a second moment of Green’s functions is necessary for analyzing the average of scattered
waves, and the fourth moment of Green’s functions is needed to analyze the average intensity
of scattered waves. It is not easy to obtain the fourth moment. An approximation of the fourth
moment is given by a product of the second moments for backscattering in some cases, and some
numerical analyses show that the monostatic cross-sections of conducting cylinders in random
media become nearly twice as large as that in free space under the condition that the spatial
coherence length of an incident wave on the cylinder is larger enough than the radius of the
cylinder[1, 2].

When the average scattered intensity is enhanced in the backward direction, it is predicted
to decrease in some other directions from the law of energy conservation for a point body
scattering[3]. To make clear numerically the prediction as well as the scattering characteristics
for a practical body scattering, we need to analyze the bistatic cross-section (BCS) and therefore
need a more general fourth moment, not only valid for backscattering.

Several approximation methods have been presented for getting the fourth moment. One
of them gives a solution for propagator of a paired field measure in a random medium as a
two-point random function, by using a two-scale asymptotic procedure[5, 6]. And the fourth
moment of Green’s functions can be obtained approximatively with the second moment of the
propagators. We apply the approximate fourth moment to the analysis of BCS of conducting
cylinders in continuous random media for E-wave incidence case and discuss numerically the
effects of random media on the BCS.
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Time factor exp(−jωt) is assumed and suppressed in the following.

2. Formulation
Consider the problem of electromagnetic wave scattering from a perfectly conducting cir-

cular cylinder embedded in a continuous random medium, as shown in Fig.1.
The random medium is assumed to be described by the dielectric constant ε, the magnetic

permeability µ and the electric conductivity σ, which are expressed as

ε = ε0[1 + δε(r)] , µ = µ0 , σ = 0 (1)

where ε0, µ0 are constant and δε(r) is a random function with

〈δε(r)〉 = 0 , 〈δε(r1) · δε(r2)〉 = B(r1, r2) (2)

Here the angular brackets denote the ensemble average and B(r1, r2) is a correlation function
of the random function. For many cases, B can be approximated as

B(r1, r2) = Bt(rt1 − rt2)δ(z1 − z2) (3)

where rt is a two-dimensional position vector in a plane transverse to the z direction. The Bt

is assumed to be the Gaussian function

Bt(rt) = B0 exp

(
−|rt|2
l2

)
(4)

where B0, l are the intensity and scale-size of the random medium fluctuation, respectively. For
practical turbulence, the following conditions may be satisfied:

B0 � 1, kl � 1 (5)

where k = ω
√
ε0µ0 is the wavenumber in free space.

Let us now consider the E-wave incidence of an electromagnetic wave radiated from a line
source which is far from the cylinder and parallel to the y axis. Under (5), the scalar wave
approximation and the forward scattering approximation are valid. Then the average intensity
of scattered waves is given by the following equation[1]:

〈|us|2〉 =
∫

S
dr01

∫
S
dr02

∫
S
dr′

1

∫
S
dr′

2

[
YE(r01|r′

1)Y
∗
E (r02|r′

2)

× 〈G(r|r01)G(r′
1|rT)G∗(r|r02)G∗(r′

2|rT)〉
]

(6)

where the asterisk denotes the complex conjugate. Here YE is the current generator in E wave
case, and can be obtained in a simple form for a conducting circular cylinder[1].

YE(r|r′) =
j

π2a2

∞∑
n=−∞

exp[jn(θ − θ′)]
Jn(ka)H

(1)
n (ka)

(7)

where Jn is the Bessel function of order n and Jn(ka) �= 0; that is, the internal resonance
frequencies are excepted. The H (1)

n is the Hankel function of first kind and the G(r|r′) is Green’s
function in the random medium. The Fourth moment of Green’s functions can be written as a
product[4]:

〈G(r|r01)G(r′
1|rT )G∗(r|r02)G∗(r′

2|rT )〉
= G0(r|r01)G∗

0(r|r02)G0(r′
1|r1T )G∗

0(r
′
2|r2T )ms (8)

where G0 is Green’s function in free space. Thems includes multiple-scattering effects of random
medium.



Let u(rt, z) denotes a random wave function in the random medium and R(rt1, rt2, z)
be a two-point random function (TPRF) defined by R(rt1, rt2, z) = u(rt1, z)u∗(rt2, z). The
R(rt1, rt2, z) at a range plane z = z′ can be related to R(rt10, rt20, z0) at the excitation plane
z = z0 by

R(rt1, rt2, z
′) =

∫ ∞

−∞
drt10

∫ ∞

−∞
drt20g2(rt1, rt2, z

′|rt10, rt20, z0)R(rt10, rt20, z0) (9)

where g2(rt1, rt2, z
′|rt10, rt20, z0) is a TPRF propagator. Then we can write

ms = 〈g2(rt1, rt2, z|rt10, rt20, z0)g2(rt3, rt4, z|rt30, rt40, z0)〉 . (10)

By referring to papers [5] and [6], for our case we have

ms =
k

2πL

∫ ∞

−∞

∫ ∞

−∞
dηdρ exp

{
− jk
L
η[ρ− (x− xT)]

}
P (ρ, η) (11)

P (ρ, η) = exp

(
−k

2L

8

∫ 1

0
dt

{
Dt[a(sin θ′1 − sin θ′2)t+ ηt]

+Dt[a(sin θ01 − sin θ02)t+ ηt]
−Dt[a(sin θ′1 − sin θ01)t− ρ(1− t) + ηt]
−Dt[a(sin θ′2 − sin θ02)t− ρ(1− t) − ηt]
+Dt[a(sin θ′1 − sin θ02)t− ρ(1− t)]

+Dt[a(sin θ′2 − sin θ01)t− ρ(1− t)]
})

(12)

Dt(r) = 2[Bt(0)−Bt(r)] (13)

where L is the distance between the source (or receiver) and the circular cylinder.

3. Numerical results
As an example, parameters of the random medium are assumed as kl = 100π and B0 =

2.5 × 10−7. The BCS in the random medium σ normalized to that in free space σ0 is shown in
Fig.2 in three cases of ka = 1, 3, 5, where φ denotes the angle between a line from the source
to the cylinder and a line from the cylinder to the receiver. The BCSs in the three cases
have almost the same value, because the spatial coherence length of the incident wave on the
cylinders lc is larger enough than the radius of the cylinders (klc � 270 � ka) and the effects of
the random medium on σ/σ0 are the same for the three cases. We note that there is a scattering
enhancement peak at φ = 0 and two valleys on both sides of the peak where the scattering
intensity is diminished. The normalized BCS at the peak is about 2, which means that radar
cross-sections (RCS) of those circular cylinders in the random medium become nearly twice as
large as that in free space. The same result for RCS has been obtained in [1] with a different
fourth moment approach. The integration value of the normalized BCS with respect to θ in
the whole range becomes 1.0006, which shows that the result agrees with the law of energy
conservation.

Next, let us see the effects of the scale size and intensity of random media on the BCS. The
radius of the cylinder is fixed on ka = 5 for convenience of discussion. Figure 3 shows changes in
the normalized BCS with different values of kl. As decreasing the value of kl, the backscattering
enhancement peak becomes sharp and high on the one hand, and the valleys become deep and
wide on the other. The change of BCS is physically reasonable.

Figure 4 shows the BCSs with different values of B0. The changes of BCS is similar to
that in Fig.3.



4. Conclusion
The bistatic cross-section (BCS) of a conducting circular cylinder in a continuous random

medium has been analyzed numerically by using an approximation of the fourth moment of
Green’s functions in the random medium. The approximation is obtained by two-scale asymp-
totic procedure. The numerical results of the BCS agree well with the law of energy conservation.
The effects of spatial correlation and intensity of the random medium are also discussed numer-
ically, and shown to be physically reasonable. From this study we conclude that we are now at
a stage that we may clarify the bistatic scattering of a conducting body of arbitrary shape and
size in a random medium.
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Fig.1: Geometry of the scattering problem
from a conducting circular cylinder
surrounded by a random medium.
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Fig.2: The normalized BCS of conducting
circular cylinders.
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Fig.3: The effect of scale size of the ran-
dom medium on the BCS.
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Fig.4: The effect of intensity of the ran-
dom medium on the BCS.


