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A Simple Modal Equation for a Single-Wire Line on a Boundary

Takashi NAKAMURA?, Hirokazu SAWADA!, Hiroshi ECHIGO? Risaburo SATO?®
1. Gifu University, 1-1, Yanagido, Gifu-shi, Gifu, 501-1193, Japan
nakataka@cc.gifu-u.ac.jp, sawahiro@cc.gifu-u.ac.jp
2. Tohoku Gakuin University, 1-13-1 Chuo, Tagajyo-shi, 985-8537, Japan
3. Electromagnetic Compatibility Research Laboratoy
6-6-3 Minami-Yoshinari, Aoba-ku, Sendai-shi, 989-3204, Japan

1. Introduction

The determination of the propagation constant for a straight wire of infinite length located in a
stratified medium is a very fundamental problem in electromagnetic theory. This structure is noticed
recently in the problem of the unintentional wave propagation in the ElectroMagnetic Compatibility
(EMC). J.R.Wait [1] presented a rigorous formulation of the modal equation for the propagation
constant of the transmission current propagation on the wire, but solving the equation is a formidable
task. More recent works have dealt with the multilayered media [2].

In this paper, we consider an infinitely long wire on a boundary of two half-spaces of
homogeneous dielectric media. We derive generalized distributed constants containing integrals for
the traveling mode current along the wire so that the propagation system exhibits the characteristics
of a traditional transmission line. Solving these integrals analytically, we obtain a simple modal
equation for the propagation constant.

2. Formulation
We consider an infinitely long thin wire of radius a located on a plane interface between two

half-spaces of the permittivities, & and ¢&,, respectively, shown in Fig.1. And the permeabilities are
assumed to be the same as that of free space p,. We have chosen a Cartesian coordinate system
(x,y,z) with the wire running on the x-axis. The interface separating the two media is the plane z =

0. A time dependence of the form e is assumed.
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Fig.1 Geometry of a wire on a boundary.

Based on electromagnetic theory, we can express the electric field E by the scalar potential ¢
and the vector potential A at an arbitrary point as follows

E=-0O¢p-jwA 010
where the potentials are expressed by the Hertz vector IT as follows

A= jowgu O 020

p=-001 030

First, the radius of the wire is assumed sufficiently small compared with the wavelength. Hence
we can approximate the current flows along the x-direction, and let /7, =0,

M=+, 40
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On the wire we obtain the following equation from(1) since its tangential electric field is zero
(J,E=0).

j, Me=k?j, OF =K1, (k* = w’ep) 060
where j, is the unit tangential vector along the wire. If the current at the coordinate x along the
wire is assumed as 1(x) (—oo < x <o), we can write
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where G, is the Green function for /7, . Also, substituting (5) into (3), we can write
2 ] aG ! al (X ) !
=-[ I(xX)—=d —G dx 080
o=f T =]

where G, is expressed by G, and G, WhICh is the Green function for /7, as follows

G, =G, +IX 9C: 4 090
0z
Next from (7) and (8), we can reduce them generalized transmission line equations as in the
following forms by the traveling wave mode method [3].

6(P(X) =2 (X 1(x), - % =n(x) @(x) g 100

where

I(x) ol (x")/ox’ ,

=-k dx’, G dx
0= .r I(x) ©x r](x) I a1 (x)/0x
Following Wait's treatment [1], the Green functions G, and G, can be obtained as following
integrals.
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where
p=y(x=-x)2+a2, y,=k¥-2, Imy, <0 (i=1,2) 0140

Equations (10) are generalized telegrapher's equations for the wire in the transmission line
theory. The symbols {(x) and n(x) are equivalent to the series impedance and the shunt admittance

per unit length of the wire. Namely, the integrodifferential equations which are derived by the
electromagnetic theory are reduced formally to the telegrapher's equations.
Their primary parameters ¢ (x) and r(x) are represented as integrals involving the unknown

current distribution. The current 1(x) may be expressed as the sum of two traveling waves.

L(x) = 1,7 1P 4 gIPo 0 150
where 3, is an assumed propagation constant, and the amplitudes 1, and 1, are arbitrary constants.
Because of the infinitely long wire, {(x) and n(x) in (11) are not depend on the position of x and
the direction of the traveling waves, so that they can be obtained easily as constants ¢, and n, by
letting x =1,=0 as follows

0o ’ 1 o . .
=-k'[ e P*G,dx', == e *Gax 0 160
ZO 1 J._m X o Lw c
We normalize {, and n, by jwi, and jwe of characteristics of region 1. Thus,
(o= Jw¥ , i——(l,U+<1‘J) 0170

o Jw&



The integrals ¥ and @ can be solved by assuming k;a <1 (i=1,2) as follows
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Finally, the propagation constant 3, of the current can be obtained from ¢, and n,.
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For convenience, we represent an equivalent relative permittivity &, by the square of S,

normalized by the free space propagation constant Kk, = w,/&yL, -
2 c
—joth=—-y+>+-2_-Int
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3.Numerical result
Equation(22) is an iterational formula of &, because c,, c, and d are the functions of [, as

shown in (20). Fig.2 shows the n-iterated equivalent relative permittivity s(“) depending on the

initial one &9 From this result, as the initial value of £ on the right of (22), (e, +¢&,)/2¢,
would be the best selection, and be used henceforth.

Fig.3 shows the convergence of ¢, of the iteration. It is found that &, converges rapidly for a
few iterations. Numerical results are shown in Fig.4 for ¢, =1, €, =2,4,8 where ¢, =¢;/¢,, and
inFig.5for ¢,=1, ¢,-4=0,-j2,-j4.FromFig.4, &, increasesas a/A increases, and is
complex though the two media are not dissipative. This means that surface wave is generated in the

medium of the lower permittivity, and leaky wave in the medium of the higher one. From Fig.5, the
real part of &, becomes independent on a/A as the imaginary part of &, increases.

4.Conclusion

We derived the simple modal equation for a single-wire line on a boundary by using the
traveling wave mode method. Numerical results show that the square of the normalized propagation
constant, i.e., the equivalent relative permittivity is larger than the arithmetic mean of permittivities of
the two media and has an imaginary part, which means the loss of radiation. It is noted that the
traveling wave of the single-wire line on the boundary has compound characteristics of surface wave
and leaky wave.

This work was supported in part by Japan Society for the Promotion of Science (JSPS) in
research for the future program.
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in the case of pure dielectric media. in the case of dissipative media.



