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1. Introduction

In this paper we provide the theoretical framework to analyze the propagation of high-

frequency electric currents along extended and arbitrarily shaped conductors. Practical exam-

ples for such conductors are given by broadband traveling wave antennas [1] or nonuniform

transmission line structures [2]. They typically have in common to possess smooth boundaries

and geometric shapes that can be described by two-dimensional Riemannian surfaces. We use

a geometric perturbation expansion to directly link the geometry of these surfaces to the dy-

namical features of propagating electric currents on these surfaces. As it will turn out these

features include as a �rst order curvature e�ect the damping of an electric current due to radia-

tion. Also the mathematical origin of continuous re
ections along a nontrivial geometry and the

generation of higher modes is recognized. However, both phenomena turn out to be second order

curvature e�ects that are present if the �rst derivative of the curvature does not vanish. This

analysis of the electric current provides, of course, analogous conclusions for the accompanying

electromagnetic �eld and therefore should prove to be useful in the context of antenna design,

for example.

The basis of our considerations is outlined in Sec. 2 where a magnetic �eld integral equation

for the electric surface current is perturbatively solved in the frequency domain. The key obser-

vation is that the single terms of the corresponding Neumann series can be further expanded in

terms of the principal curvatures of the conducting surface. This geometric expansion is valid at

high frequencies where the wavelength becomes comparable to or smaller than the characteristic

geometric dimensions. To become more speci�c we then assume, in Sec. 3, that the conducting

surface has a line-like structure such that a thin-wire approximation can be performed. The

resulting formulas are elementary enough to analytically study in Sec. 4 the relation between a

propagating electric current and the curvature of the conductor.

2. Scattering expansion and curvature expansion

To begin with we concentrate on a conductor with a two-dimensional smooth surface that

resides in a homogeneous medium (like vacuum, for example). We assume the conductor to

be a good one such that an incident electromagnetic �eld induces a surface current k, i.e., a

current line density, and thus does not signi�cantly penetrate into the conductor. In terms of

the magnetic �eld the general solution of Maxwell's equation in Lorentz gauge reads [3]

H(r) =rr�

Z
G(r; r0)J(r0) d2�0 ; G(r; r0) =

exp(jkjr � r0j)

4�jr � r0j
; (1)

with J the electric current density which appears in Maxwell's equations and G(r; r0) the re-

tarded Green's function of free space. The time dependence is assumed to be of the form
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exp(�j!t). On the surface the coupling between the electromagnetic �eld and the electric sur-

face current is expressed by means of the boundary condition

n�H = k (on the surface) (2)

where n denotes an outwards pointing normal unit vector. The current k is the sum of an

(initially known) source current ks and an (initially unknown) induced current kc which is due

to scattered electromagnetic �elds, k = ks + kc. In the same way we have the magnetic �eld as

a sum of a primary �eld Hs, which is due to ks, and an induced magnetic �eld Hc, which is

due to kc, that is, H =Hs+Hc. From this it is straightforward to obtain via Green's theorem

an integral equation for the unknown induced current kc [4],

kc(r) = 2nr �H
inc
s
(r) + 2

Z
nr �

h
rr �

�
G(r; r0)kc(r

0)
�i

d2�0 ; (3)

withH inc
s (r) the incoming magnetic �eld which is due to ks(r

0) for r 6= r
0. This integral equation

is of the second kind and can be solved by iteration. For this purpose we de�ne the �rst order

current k1c := 2n�H inc
s

and the functional F : : : := 2
R
nr� [rr� (G(r; r0) : : : (r0))] d2�0. This

yields the Neumann series

kc = k1c + Fk1c + F 2
k1c + : : : = k1c + k2c + k3c + : : : (4)

for the unknown current kc. It has the physical interpretation of a scattering expansion where

the nth term knc accounts for contributions of electromagnetic �elds which got scattered (n�1)-

times at the conducting structure.

With the determination of the induced current kc the dynamical problem is, in principle,

completely solved. However, the remaining practical problem consists in evaluating expressions

of the form k1c = Fks and k(n+1)c = Fknc for n � 1. For this purpose it turns out to be

advantageous to simplify the vectorial expressions within the functional F by means of geometric

scalar quantities. Since the Green's function signi�cantly contributes to F only at short distances

it is reasonable to expand (Fks)(r), (Fknc)(r) around r in the following way [5, 6]: We �rst

establish a local coordinate frame with r as its origin, i.e., r = (0; 0; 0), and take as x- and

y- axis the principal axes of the surface at r with principal curvatures �1 and �2, respectively.

Their orientation is chosen such that we obtain a right-handed coordinate system at r if the

outwards pointing normal vector nr is chosen as z-axis. Then a Taylor expansion of the third

component of r0 = (x0; y0; z0) yields

z0(x0; y0) =
1

2

�
�1(r

0)x02 + �2(r
0)y0

2
�
+ : : : : (5)

The dots indicate terms of third and higher order in the distance jr � r0j = jr0j = r0 and also

contain derivatives of the principal curvatures. It is important to note that the scale of r0 must

be seen in relation to the principal curvatures, i.e., the expansion is a reasonable one for �1r
0 � 1

and �2r
0 � 1. This limits the curvature expansion to electrically large regions. It is now possible

to show [5] that

(Fks)(r) = k1c(r) = 2

Z
G0(r; r0)

r0
ks(r

0)
�
�1(r)v

�n(r0)+�2(r)w
�n(r0) + : : :

�
d2�0 : (6)

Here we de�ned G0(r; r0) := @G(jr � r0j)=@(jr � r0j), ks(r
0) := jks(r

0)j, and the vectors

v
�n(r0) :=

0
@ x02(sin �n�cos �n)

x02(sin �n+cos �n)� 2x0y0(sin �n�cos �n)

0

1
A ; (7)

w
�n(r0) :=

0
@�y

02(sin �n�cos �n) + 2x0y0(sin �n+cos �n)

�y0
2(sin �n+cos �n)

0

1
A ; (8)



with �n the angle between the unit vector er0 = 1=2(1; 1; �1 x
0 + �2 y

0) at r0 and the current

vector knc(r
0). An analogous formula to (6) is valid for (Fknc)(r). The result (6) accounts

for the normally dominant in
uence on (Fk1c)(r) which is due to the continuously connected

neighborhood of the conducting structure around r. If the conducting structure consists of

several disconnected conductors also possible contributions of these disconnected parts need to

be considered. Depending on the speci�c constellation the curvature expansion can be applied

in this case, too.

3. Thin wire approximation

Conducting structures that carry propagating currents, as the afore mentioned antennas or

transmission line, are often given by wire structures. If the wires are relatively thin compared to

the wavelength considered it is customary to reduce them to one-dimensional lines by integrating

out the spatial dimension along the circumference. This is rather trivial as long as the current

distribution is assumed to be constant along the circumference. In the high frequency limit it is

expected that this assumption does not yield the correct physical picture such that di�raction

theory needs to be applied in order to properly take into account the in
uence of shadow regions

and creeping waves [7]. However, if the assumption of a wire radius that is considerably smaller

than the wavelength is valid it is possible to apply a thin wire approximation to (6) with the

principal curvatures �1, �2 locally corresponding to the geometry of a section of a torus. This

yields the scalar relation

k1c(r) = 2��(r)

Z
G0(r; r0)

jr � r0j
ks(r

0)(y � y0)
2
dy0 (9)

with � the wire radius and �(r) the curvature of the wire at r. Here the coordinate y parameter-

izes the (one-dimensional) wire such that the corresponding tangent vector @=@y is normalized

to unity. Therefore the expression jy � y0j is a measure for the length of the wire between the

points r and r0. This length should not be confused with the distance jr�r0j. Both expressions

only coincide if the wire section between r and r0 is straight. More explicitly, we have to lowest

order in the curvature

jr � r
0
j = jy � y0j

�
1�

�2(y)

24
jy � y0j2 + : : :

�
: (10)

The result (9) takes into account the current-current sel�nteraction of a single wire. An example

for a disconnected structure is a transmission line which consists of a wire that is held at a �xed

height h=2 above a perfectly conducting ground plane. In this case the relation (9) generalizes

to

k1c(r) = 2��(r)

Z �G0(r; r0)

jr � r0j
�

1q
1 + ( h

jy�y0j
)2

G0
h
(r; r0)

jr � r0j

�
ks(r

0)(y � y0)
2
dy0 (11)

with the modi�ed Green's function Gh(r; r
0) := exp(jk

p
jr � r0j2 + h2)=

p
jr � r0j2 + h2.

4. First and second order evaluation: Radiation e�ects, continuous re
ections and generation of

higher modes

To gain some physical insight we consider a traveling wave current of the form ks =

k0 exp(jky), i.e., the wave travels towards increasing y. It can be plugged into the relations

(9) and (11). To evaluate the resulting integrals we �rst express jr � r
0j in terms of jy � y0j

according to (10). It is then interesting to note that if either the lowest order approximation

jr�r0j � jy�y0j is used or the curvature is constant the integrands depend only on the di�erence

jy� y0j except for the factor ks(y
0) = k0 exp(jky

0). Then the integration variable can be shifted



according to y0 �! y0 + y and it is possible to eliminate the y dependence from the integrals by

pulling a factor exp(jky) in front of them. This yields a �rst order current of the form

k1c(y) =
��k0

2�
C(k) exp(jky) (12)

with a complex factor C(k) which depends only on k (or possibly geometric parameters like h in

(11)). The explicit integrals contained in the factor C(k) are rather elementary and can, after

a regularization procedure which subtracts out a quasistatic diverging contribution, be either

analytically estimated or numerically evaluated. It is then seen that C(k) is dominated by a

negative real part. In view of (12) this means that the traveling wave current experiences a

damping while passing along a curved wire section. This damping is attributed to radiation and

can be expressed by means of the notion of radiation resistance. However, the forward traveling

wave remains to be a forward traveling wave of the same frequency.

We now assume that the curvature along the wire region considered is not constant and the

full expression (10) is used in the replacement of jr � r
0j within the integrals. In this case it

is not possible to immediately eliminate the y-dependence from the integrand by pulling out

a factor exp(jky). Rather it is required to analyze the spectrum of the resulting expressions

(e.g. by Fourier analysis) which depend on the change of curvature. For example, it is possible

to expand �(y) itself in a Taylor series, making the dependence on the derivative �0(y) more

explicit. Due to the minus sign in (10) in front of the curvature it is then recognized that the

spectrum will not only contain modes with a wavenumber di�erent from k but also backwards

traveling waves which are interpreted as re
ections of the forward traveling wave while passing

along wire sections of variable curvature.

In conclusion we have thus recovered the main dynamical features of a propagating electric

current and analytically shown their connection to the geometry of the underlying conductor.

Our current research concentrates on the extension of these results to geometric regions that are

electrically short like regions close to sharp bends or edges.
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