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Abstract — Dispersion characteristics of a rect-
angular waveguide grating for microwave am-
plifier applications are studied in a rigorous
mathematical manner on the basis of the sin-
gular integral equation method. Over a wide
range of grating parameters, numerical result-
s are in a surprisingly good agreement with
those obtained before by a simplified consid-
eration. Meanwhile, the difference between t-
wo approaches becomes significant with the
decrease in the lamellar thickness.

I Introduction

Metallic periodic grating structures have nu-
merous applications in the microwave and mil-
limeter wave techniques. Particularly, they
serve as slow wave structures in a lot of mi-
crowave electron devices [1-3]. Very often the-
oretical considerations of such structures are
based on simplified treatments of the bound-
ary value problems associated with the period-
ic gratings. In the case of rectangular grooves
(lamellar gratings), the fields inside them can
be expressed in terms of infinite Fourier se-
ries. However, for the sake of simplicity, only
the first term of the series is often taken in-
to account [1-2],[4-5] (later called single mode
approximation: SMA). Results were in a good
agreement with the experimental observations
[6] when the period of the structure is much
less than the vacuum wavelength.
Meanwhile, due to such widely present and
probably potential applications of periodic

Figure 1: Geometry of the problem.

structures with lamellar gratings, the devel-
opment of a more universal and flexible math-
ematical description is most desirable. With
such a useful technique, one could more thor-
oughly realize the validity of the above men-
tioned simplified treatment and reveal the sit-
uations where it can not provide a proper pre-
cision.

In this paper, we develop a new approach
based on the singular integral equation (SIE)
method [7-8], in order to carry out the full
wave modal analysis of a rectangular waveg-
uide grating rigorously. Numerical results are
compared with those obtained by the SMA
method, which is presently available for a spe-
cific hybrid (T'E,) mode. A brief illustration
of dispersion characteristics for a more natu-
ral (TM) mode calculated by our method is
also shown in this paper.
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II Boundary Value Problem and
Initial Singular Integral Equation

A rectangular waveguide illustrated in Fig.1 is
considered. According to [4-5], such a struc-
ture supports T'E,,,, mode, where I, = 0.
For this polarization, all electromagnetic field
components can be expressed through H, =
Hyp (2, 2) sin(T2y)e For Hyp,(z,2) =
U(z, z), the Helmholtz equation reads:
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with Neumann’s boundary conditions on the
top and bottom walls:
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where n is the unit normal to the surface.
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From the Floquet theorem, we can restrict
the consideration to only one grating period,
0 < z < p. Over the grating (0 < z < D),
U(z,z) can be found in the form of spatial
harmonic series:

V(z,z) = i a, cosh[x, (D — )] % (3)
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where k, = k. 4+ nko, xn = /k2 —v2, ko =

y
27 /p, and a,, (n=0,4+1,42---) are unknown
amplitudes of spatial harmonics.

In the groove (—h < 2 < 0,0 < z < d), the
solution can be expressed in terms of Fourier

series:

V(z,z) = i X, cosh[v,(x + h)] cos&,z (4)
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where §, = =7, v,

= /&2 — v and X, are
unknown modal coefficients.

The next step is to match the electromag-
netic fields at the interface between the two
regions, where the continuity of ¥(z,z) and
M\Da%l at £ = 0, 0 < z < d is required. Intro-
ducing the new function 2% (z, 2)|,_, = F(2),
0 < z < d, we can express a, in terms of
F(z) by inverting the differentiation of (3)
at * = 0. Substituting a, into (3), we ob-
tain the following integral representation for

W(w,2)],mq0 = W (2):

Ut () = —/OdGo(z _ ) F(Z) de', 0<z<d (5)
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Proceeding in the same way with the field in-
side the groove and taking into account the
continuity of %(_w,z) at * = 0, we have
U(x,2)|,_o =¥ (2):

U (2) :/OdGl(z,z’) F() d, 0<z<d (6)
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Thus, for the the continuity of ¥(z, z)
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Ut(z) =0 (2), 0<z<d (7)

we finally obtain the integral equation:
d
/G(Z,z’) F(z') d2' =0, 0<z<d (8)
0

where

G(z,2) =Go(z — 2') + Ga(z — ')
+Ga(z + 2'),

Ga(z) = Z enw cos&pe.
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The integral equation (8) is an exact dis-
persion relation, corresponding to the initial
boundary value problem (1) with (2). It con-
tains complete information about dispersion
properties of the structure, where all spatial
harmonics of the field over the groove and all
Fourier harmonics inside the groove are tak-
en into account. However, the kernel of (8)
has a logarithmic weak singularity as z — 2/
[8]; i.e., Go(z,2') — Aln|z — 2| for z = 2/,
where A is constant. As is well known, such
an integral equation of the first kind is very
inconvenient for direct numerical analysis, be-
cause the numerical solution is very unstable
In the
next section, one specific method for deriving

with respect to small perturbations.

stable numerical results will be presented.



III Description of the Numerical

Method

Since the more singular behavior of the kernel
as z — z' provides the more stable solution
[9], we differentiate (8) with respect to z and
gain the integral equation with a stronger sin-
gularity. The resulting equation has a kernel
with the Cauchy-type singularity:

d
/G’(z,z’) F(Z') dz' =0 (9)
0
where
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Further, the additive constant for the solu-
tion of (9) can be defined from an auxiliary
condition, which can be obtained by the inte-
gration of (8) over the interval (0, d):

/dM(z’) F()d? = 0 (10)
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Thus, the integral equation (9) with the aux-
iliary condition (10) defines a unique solu-
tion with a proper behavior near the edges
of lamellars (z = 0,2 = 0,d): F(z) ~ (2(d —
2))~13. When F(2) = const, we can easily
obtain, from (10), the SMA dispersion rela-
tion coincided with that in [4].

For the numerical analysis of the integral e-
quation (9) with the auxiliary condition (10),
we use the direct numerical method develope-
d in [10]. It results in the dispersion rela-
tion which is appropriate for numerical analy-
sis of rectangular waveguide gratings with any
reasonable parameters, including overmoded
waveguides. By this approach, the multi-
modal content of the fields as well as the singu-
larity of the fields near the edges of the lamel-
lars can be taken into account correctly.

IV  Numerical Results

For the shallow and deep rectangular grating
waveguides, which have been studied in detail
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Figure 2: Dispersion curves for the first two
modes for the deep grating.

theoretically in the scope of SMA [4-5] as well
as experimentally [6], we see quite a good a-
greement between the SIE and SMA methods.
The difference between two methods does not
exceed 2% for the first four T'F, modes for
both deep and shallow gratings (see Fig. 2 for
the deep grating). The overall dispersion be-
havior of the shallow grating calculated from
the SIE method is shown in Fig. 3(a).

In the SIE approach, singularities near the
edges of lamellars are correctly taken into ac-
count. Meanwhile, by the SMA approach, we
cannot explain the local behavior of the field
which is quite different from the average dis-
persion characteristic of the structure, espe-
cially near the edges of lamellars.
sult, differences between the two approaches
become more significant when the ratio d/p
increases. For a grating with the same values
of p, h and w as those in Fig. 3, D = 3.116
mm and d/p = 0.9, the relative errors of the
SMA approach are larger, reaching 5.4%.

In [4-5], the TE, mode was considered, s-
ince it provided simplicity of analysis. How-
ever, the T'Ey, mode is not a natural mode in
the rectangular waveguide grating, where any
electromagnetic field can be expressed as a lin-
ear combination of the two more natural po-
larizations TM,,,, (H, = 0) and TFE, (E, =
0). On the other hand, as for the beam-wave
interaction where only the TM mode can take
part in the coupling process, the simplified ap-
proach does not seem sufficient for the analy-
sis. This is because, in particular, the process
of beam bunching is more sensitive to the lo-

As a re-
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Figure 3: Dispersion curves calculated from
SIE for the shallow grating; (a) TE,, (b)
T M polarizations, parameters; p = 3.556, h =
1.588,d = 1.778, D = 5.08 and w = 15.799
[mm].

cal field behavior than to the average disper-
sion properties of the cold structure. There-
fore, from the above viewpoint, it is reasonable
to extend our rigorous approach to the T'M
mode analysis, with only a little modification
in mathematical treatment. Dispersion curves
for the TM polarization calculated from the
SIE method is presented in Fig. 3(b). De-
tailed considerations on the behavior of T M
modes will be given later.

V  Discussion and Conclusion

In this work, full wave modal analysis of dis-
persion properties for the T'F, mode in the
rectangular waveguide grating has been car-
ried out on the basis of the SIE method. How-
ever, numerical difficulties came with a loga-

rithmic weak singularity in the kernel, where
the solution was rather unstable with respec-
t to small perturbations. The method ap-
plied here enabled us to effectively overcome
the above mentioned difficulties. Results were
compared with those obtained before in the
scope of SMA. A surprisingly good agree-
ment between SMA and SIE approaches were
demonstrated for both deep and shallow rect-
angular gratings. However, the difference be-
tween two approaches became significant with
increasing the ratio d/p, since the field behav-
ior characterized by each approach was much
different especially near the edges of lamellars.
Similar results were also expected for the case
of T M polarization.
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