
COUPLED-MODE ANALYSIS FOR DISPERSION AND IMPEDANCE
CHARACTERISTICS OF MICROSTRIP LINES ON FERRITE SUBSTRATES

Mayumi Matsunaga and Kiyotoshi Yasumoto
Graduate School of Information Science and Electrical Engineering, Kyushu University

6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 Japan
E-mail mmayumi@csce.kyushu-u.ac.jp, yasumoto@csce.kyushu-u.ac.jp

1. Introduction
A coupled-mode formulation for coupled microstrip lines on a magnetized ferrite substrate

is presented. The formulation is an extention of the coupled-mode theory for microstrip lines
on an isotropic substrate [1], [2]. Since the magnetized ferrite exhibits a biaxial anisotropy in
the permeability, the guided-wave fields in such medium do not in general obey the conventional
reciprocity relation for the fields in an isotropic medium. Thus, we derive first the generalized
reciprocity relation for two sets of guided-wave fields propagating in the ferrite. The reciprocity
relation is used to obtain the coupled-mode equations for the modal amplitudes in each isolated
lines. The new formulation is applied to two coupled microstrip lines on a ferrite substrate.

2. Generalized reciprocity relation
Consider the guided-wave fields in a ferrite magnatized in the x direction. The permeability

tensor of the ferrite is given as:

[ ¯̄µ(+)] = µ0


1 0 0

0 µ −iκ
0 iκ µ


 , with µ = 1 − ω0ωM

ω2 − ω2
0

and κ =
ωωM

ω2 − ω2
0

(1)

where ω0 = −γµ0Hi, ωM = −γµ0Mi, Hi is the internal dc magnetic field, Mi is the saturation
magnetization and γ is the gyromagnetic ratio. We define the electric fields E(+), the magnetic
fields H(+), and the current density J (+) associated with the guided wave propagating in the
+z direction in the magnetized ferrite as follows:

E(+) = e(+)(x, y)e−iβz = [et(x, y) + ẑez(x, y)]e−iβz (2)

H(+) = h(+)(x, y)e−iβz = [ht(x, y) + ẑhz(x, y)]e−iβz (3)

J (+) = j(+)(x, y)e−iβz = [jt(x, y) + ẑjz(x, y)]e−iβz (4)

where e(+)(x, y), h(+)(x, y) and j(+)(x, y) represent the eigenmode fields and current, and β
denotes the mode propagation constant. Then, E(+), H(+) and J (+) satisfy the following
Maxwell’s equations:

∇× E(+) = −iω[ ¯̄µ(+)]H(+), ∇× H(+) = iωεE(+) + J (+). (5)

Let E(−), H(−) and J (−) be another set of modal fields and current which are defined using the
respective components of e(+)(x, y), h(+)(x, y) and j(+)(x, y) as follows:

E(−) = e(−)(x, y)eiβz = [et(x, y) − ẑez(x, y)]eiβz (6)

H(−) = h(−)(x, y)eiβz = [−ht(x, y) + ẑhz(x, y)]eiβz (7)

J (−) = j(−)(x, y)eiβz = [jt(x, y) − ẑjz(x, y)]eiβz . (8)

These new fields express the guided waves propagating in the −z direction. If a medium support-
ing the guided waves is isotropic, (E(−),H(−),J (−)) also satisfy the same Maxwell’s equations
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as those for (E(+),H(+),J (+)). However this is not the case. Substituting the transformations
(6)–(8) of the field variables into Eq. (5), and comparing the equations with Eq. (5) term by
term, it follows that (E(−),H(−),J (−)) satisfy the following Maxwell’s equations:

∇× E(−) = −iω[ ¯̄µ(−)]H(−), ∇× H(−) = iωεE(−) + J (−) (9)

where [ ¯̄µ(−)] represents the permeability tensor of the ferrite magnetized in the −x direction and
is related to the original [ ¯̄µ(+)] as follows:

[ ¯̄µ(−)] = µ0


1 0 0
0 µ iκ
0 −iκ µ


 = [¯̄µ(+)]T . (10)

Let E and H be the electric and magnetic fields produced by a current source J in a
medium with ε(y) and [ ¯̄µ(y)], and E′ and H ′ be the electric and magnetic fields produced by a
current source J ′ in another medium with ε(y) and [ ¯̄µ′(y)]. These two sets of fields satisfy the
following Maxwell’s equations, respectively:{∇× E = −iω[ ¯̄µ(y)] · H

∇× H = iωε(y)E + J
,

{∇× E′ = −iω[ ¯̄µ′(y)] · H ′

∇× H ′ = iωε(y)E′ + J ′. (11)

When (E,H ,J) belong to the guided fields (E(+),H(+),J (+)) satisfying Eq. (5) and (E′,H ′,J ′)
belong to the guided fields (E(−),H(−),J (−)) satisfying Eq. (9), the following reciprocity relation
is obtined:

∂

∂z

∫
S
(E × H ′ − E′ × H) · ẑdxdy =

∫
S

E′ · Jdxdy −
∫

S
E · J ′dxdy (12)

where S denotes the cross-sectional area in the transverse x-y plane.

3. Coupled-mode equations
Using the reciprocity relation (12), the coupled-mode equations for N coupled microstrip

lines on the substrate of magnetized ferrite with [ ¯̄µ(y)]=[ ¯̄µ(+)] as shown in Fig. 1 can be for-
mulated in the same way of the case for an isotropic substrate. For the first set of solutions
(E,H ,J) in Eq. (12), we adopt the eigenmode fields and current in the original coupled struc-
ture and approximate them as follows:

E =
N∑

ν=1

aν(z)eν(x, y), H =
N∑

ν=1

aν(z)hν(x, y), J =
N∑

ν=1

aν(z)jν(x, y) (13)

where eν(x, y), hν(x, y) and jν(x, y) (ν = 1, 2, ...N) are eigenmode functions for the fields and
current propagating in the +z direction along each of the N microstrip lines in isolation, and
aν(z) is an unknown amplitude function. As the second set of solutions (E′,H ′,J ′) in Eq. (12),
we employ each of the eigenmode fields and current propagating in the −z direction along the
respective N isolated microstrip lines on the ferrite substrate with [ ¯̄µ′(y)] = [ ¯̄µ(−)] as follows:

E′ = e(−)
ν (x, y)eiβ

(0)
ν z = [eν,t(x, y) − ẑeν,z(x, y)]eiβ

(0)
ν z

H ′ = h(−)
ν (x, y)eiβ

(0)
ν z = [−hν,t(x, y) + ẑhν,z(x, y)]eiβ

(0)
ν z

J ′ = j(−)
ν (x, y)eiβ

(0)
ν z = [jν,t(x, y) − ẑjν,z(x, y)]eiβ

(0)
ν z, (ν = 1, 2, ...,N)

(14)

where β
(0)
ν is the propagation constant of the isolated ν-th microstrip line. Substituting Eqs. (13)

and (14) for each of N isolated microstrip lines into the reciprocity relation Eq. (12), the coupled-
mode equations are derived as follows:

d

dz
a = −i[C]a, with a = [a1 a2 ...aN ]T and [C] = [M ]−1[K] (15)



Kνµ = β(0)
ν Mνµ + Qνµ , Mνµ =

1
2
(Nνµ + Nµν) , Nνµ =

1
2

∫
S
[eν(x, y) × hµ(x, y)] · ẑdxdy (16)

Qνµ = − i

4

∫
lµ

[eν,x(x, h1)jµ,x(x) − eν,z(x, h1)jµ,z(x)]dx , (ν, µ = 1, 2, ...,N) (17)

where lµ denotes the cross-sectional contour of the µ-th line and the eigenmode fields and current
in the isolated lines are normalized so that Nνν = 1. Note that Qνν = 0 since eν,x(x, y) =
eν,z(x, y) = 0 on the surface of the ν-th line. The solutions determine the forward and backward
propagation constants β

(±)
m of the coupled mode m and the modal amplitudes a

(±)
νm of the current

on the ν-th line.

3.1. Characteristic mode impedances
The characteristic mode impedances are calculated using the orthogonality of the eigen-

voltages and eigencurrents in the coupled lines. The eigencurrents on the ν-th line for mode m
is given as:

I(±)
νm = a(±)

νm e−iβ
(±)
m z

∫ xν+wν

xν−wν

jν,z(x)dx, (ν,m = 1, 2, ...N). (18)

The characteristic mode impedance Z
(±)
c,νm of the ν-th line for mode m is defined as:

V (±)
νm = Z(±)

c,νmI(±)
νm (19)

where V
(±)
νm represents the eigenvoltage. I

(±)
νm and V

(±)
νm are related to the total power P

(±)
m carried

by mode m in the z direction as follows:

1
2

N∑
ν=1

V (±)
νm I

(±)∗
νm′ = P (±)

m δmm′ (20)

P (±)
m =

1
2

∫
S
(E(±)

m × H(±)∗
m ) · ẑdxdy =

N∑
ν=1


 N∑

µ=1

a(±)
νma(±)

µmN (±)
νµ


 (21)

where δmm′ is Kronecker’s delta, E
(±)
m and H

(±)
m are the total electric and magnetic fields for

mode m. Substituting Eqs. (19) and (21) into Eq. (20), the expression of Z(±)
c,νm in terms of the

solutions to the coupled-mode equation (15) is derived.

3.2. Impedance Matrices
Consider the impedance matrix for the coupled-line 2N-port as shown in Fig. 2. The

current Iν(z) on the ν-th line is expressed in terms of solutions of the coupled-mode equation
(15) as follows:

Iν(z) =
N∑

m=1

[
A2m−1R

i(+)
νm e−iβ

(+)
m z −A2mRi(−)

νm eiβ
(−)
m z

]
(22)

where R
i(±)
νm = I

(±)
νm /I

(±)
1m is the current ratio on the ν-th line for mode m and Ai (i = 1, 2, ..., 2N)

is an arbitrary constant. The corresponding line voltage Vν(z) is determined by using Eq. (19)
as follows:

Vν(z) =
N∑

m=1

[
A2m−1Z

(+)
c,νmRi(+)

νm e−iβ
(+)
m z + A2mZ(−)

c,νmRi(−)
νm eiβ

(−)
m z

]
. (23)



For the N coupled lines of length l, the current-voltage relationships of the 2N-port shown in
Fig. 2 derived from Eqs. (22) and (23) are solved to obtain the impedance matrix [Z] defined
as follows:

V = [Z]I, with V = [V1V2 . . . V2N ]T and I = [I1I2 . . . I2N ]T (24)

where In and Vn (n = 1, 2, ..., 2N) represent the port currents and voltages, respectively, as
shown in Fig. 2.

4. Numerical results
As a model of the numerical computation, we considered two coupled microstrip lines

on a ferrite substrate where h1=1.0mm, w=0.5mm, d=0.5mm, εr=12.7, Hi=102555A/m and
Mi=170925A/m. Figure 3 shows the frequency dependence of the normalized propagation con-
stants β/k0 of the two coupled-modes for the forward wave and the backward wave. Figure 4
shows the characteristic mode impedances as functions of frequency. Figure 5 shows the elements
Z12, Z13, Z22 and Z23 of the impedance matrix for the two lines where l=20mm.
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Fig.1 Cross section of N coupled microstrip
lines on a magnetized ferrite substrate.
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Fig.2 A 2N-port circuit of the N microstrip
lines.
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Fig.3 Normalized propaga-
tion constants of two identi-
cal microstrip lines.
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Fig.4 Characteristic mode
impedances of two identical
microstrip lines.
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Fig.5 Elements of the
impedance matrix for two
identical microstrip lines.
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