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1 Introduction

Investigation of space environment around the earth has become a critical issue in designing
commercial satellites. As the characteristics of plasma waves propagating in the magnetosphere
reflect the plasma environment around the earth, it is important to measure the propagation
(wave normal) direction of these waves. In the present study, we propose a new direction
finding method applicable to plasma waves in the very low frequency (VLF) range observed by
a scientific satellite based on the wave distribution function (WDF). The WDF is most suitable
for the description of the plasma waves arriving from multiple directions, but its determination is
an ill-posed problem. Therefore some adequate model must be assumed to solve the problem. In
the present study, we introduce a model fitting method using the Gaussian distribution model.

2 Wave distribution function method

The WDF is derived from the concept that observed signals consist of a number of elementary
plane waves and can be defined as a distribution of the wave energy density relative to the
angular frequency w and to the arrival directions (0, ¢), where # and ¢ are the polar and
azimuthal angle in the geomagnetic coordinate system, respectively. Calculating a spectral
matrix composed from the auto-spectra and cross-spectra of the electric and magnetic wave
field components, the WDF is related to the spectral matrix by the following equation,
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where S;; are the elements of spectral matrix, a;;(w,0,$) are the integration kernels [Storey
and Lefeuvre, 1979; 1980], and F(w,, ¢) is the distribution function for a wave of frequency w
and the wave normal direction (6, ¢). Integration kernels a,; are determined by the propagation
mode, plasma frequencies, and cyclotron frequencies of electron and ions. Thus a;; are derived
from the refractive index of the wave in which the effects of ions are involved.

Knowing the integration kernels a;; and the calculated S;;, we can estimate the function F'
by solving the set of integral equations (1), but solving these equations is an ill-posed problem
and the solution is not determined uniquely. In order to solve this kind of equations, we must
assume an adequate model as a solution. In the present study we apply the Gaussian distribution
model.

3 Algorithm using the Gaussian distribution model

3.1 Gaussian distribution model

The Gaussian distribution model is derived from the concept that observed signal consists of m
pieces of waves whose distribution function F' is represented by a combination of the Gaussian
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distributions as follows [Kasahara and Kimura, 1998];
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where «; is the intensity at the direction (6, ¢;) which is the center of distribution, d; represents
the angular extent of the distribution, and d;y(f, ¢) is the angle between (6,¢) and (6, ¢;).
Unknown parameters (6, ¢, ay, d;) are determined by the non-linear least-squares fitting method.
This method has an advantage of expressing the model in terms of clear physical parameters, but
it requires an accurate set of initial parameters in order to find a global minimum. Exhaustive
grid search for the initial parameters is a time-consuming procedure, and becomes prohibitive
for I > 2.

In this study, we developed techniques for determination of initial values and for the inte-
gration of the WDF, which drastically improved the precision of the parameter fitting and the
amount of calculation time.

3.2 Configuration of the grid points

We divide (0, ¢) space uniformly on the spherical surface in the adequate interval as shown in
Fig. 1. Using this configuration of the grid points, residual for the best initial values is generally
improved compared with the configuration that the variables # and ¢ are separately divided
uniformly. As for the parameter d;, grid points are selected to be exponentially uniform.

3.3 Numerical integration of the WDF

On the assumption that the wave energy is expressed by the Gaussian distribution, precision of
the integration is sufficiently assured even though the integral range for the numerical integration
of (1) is limited in an adequate range around the arrival direction of the wave. We adopted an
adaptive method which chooses the integral range in proportion to the extent of the wave
distribution (d;) around the center of the arrival direction (6}, ¢;) and the integral interval to
cover each Gaussian with the same number of samples shown as Fig. 2.

3.4 Pre-processing stage using energy function

In order to get an adequate solution by the Gaussian distribution model, the number of arrival
waves m must be assumed. A pre-processing stage is introduced to determine the number m. We
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Fig. 1. Configuration of the grid

points in (6, ) space Fig. 2. Grids used for the numerical integration.
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assume that the observed spectral matrix S,ps is composed by a combination of the estimated
spectral matrices Sjest,

Sobs = T181est + 2895t + -+ - + xnsnesty (3)

where n is the total number of grids used for the initial value determination. In the condition
that no variables (x---x,) are negative, it is confirmed by the simplex method that there is
no solution which satisfies (3). We define the following energy function E as a dispersion of the
ratios of corresponding elements of both sides in (3),
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Solving the dynamics system represented by the following differential equations,
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the minimal value of E is obtained, when the initial values of ; are randomly given in [0:1].
Applying the steepest descent method combined with the random search method to (5), an
optimum solution of (z1---x,), where E becomes almost minimum, is obtained. This solution
is referred to as the approximate distribution of the WDF for the determination of the initial
values of the parameter fitting. The merit of this method is that the calculation time is almost
constant regardless of the number of arrival waves. This pre-process is also useful for examining
the validity of the final solution reconstructed by the Gaussian distribution model.

4 Simulation

The performance of the WDF method with the Gaussian distribution model is evaluated using
the computer-generated spectral matrices S;; calculated by (1) from given wave distribution
functions F'(w, 6, ¢). In the simulation, the source wave is assumed to be whistler mode wave at
10kHz, and the plasma frequency and the cyclotron frequency of electron are 60kHz and 400kHz,
respectively. Several cases are examined by varying the distribution of arrival waves.

In case (a), F is assumed to be a single point source located at (6, ¢)=(30°, 60°) (Fig. 3(a)).
In the figure, the polar angle 0 is shown by the radius of the circle, and the azimuthal angle ¢
is indicated peripherally counterclockwise from the reference radial axis of the polar angle. In
case (b), F' is composed of two Gaussian distribution with the parameters (61, ¢1, a1, d;) = (30°,
60°, 3, 10°) and (62, @2, aa, d2) = (60°, 200°, 1, 30°) (Fig. 3(b)). In case (c), F is assumed to be
distributed along the resonance angle of whistler mode wave shown as Fig. 3(c).

Fig. 4(a) and Fig. 4(b) show the final reconstructed wave distributions of cases (a) and (b)
using the parameter fitting by the Gaussian distribution model, respectively. It is found that
the wave distributions are successfully reconstructed both in case (a) and (b), and the fitting
errors are small enough.

Fig. 4(c) shows the approximate wave distribution of case (c¢) at the pre-processing stage. In
this case, the wave distribution is practically reconstructed by the combination of several Gaus-
sian distributions at the pre-processing stage, although the given distribution is non-Gaussian.

5 Results

The direction finding method using the wave distribution function with the Gaussian distribution
model is proposed. It is found that the wave distribution is well reconstructed by a combination
of the Gaussian distributions. It is remarkable that the proposed method is applicable to all
considered cases where the arrival wave is a point source or a combination of extended sources.
The amount of the calculation time is small enough for the practical use.



This method is applied to the data observed by the Akebono satellite, such as Omega signals,
whistlers, chorus emissions. The derived wave normal directions are in the acceptable range
from theoretical viewpoints. It is also found that the proposed method is also utilized for the
calibration of the electric and magnetic sensors onboard the satellite.
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Fig. 3. Simulated wave distributions; (a) a point source, (b) two Gaussian distributed
sources, and (c) the distribution along the resonance angle of whistler wave.

Fig. 4. Reconstructed wave distribution; (a) and (b) the final solutions determined by the
proposed method, and (c) an approximate solution obtained by the pre-processing stage.



