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Abstract— Ultra wide band (UWB) propagation channels are
highly rich in multipaths. A major problem encountered in UWB
systems is to capture enough multipaths to maintain a sufficient
signal to noise ratio (SNR) for further signal processing. This
leads to a RAKE receiver with large number of fingers. Channel
shortening can help in simplifying the RAKE receiver archi-
tecture by reducing the channel taps. The recent developments
in channel shortening mainly deal with time varying wired line
scenarios like multicarrier modulation (MCM) systems where
it is used to suppress few channel taps outside the cyclic prefix
(CP) length. In UWB systems, the problem of channel shortening
appears in its extreme form where a large number of channel
taps are needed to be suppressed and most of the channel energy
should be compressed within just few taps. Hence, the underlying
theory and assumptions of most of the existing algorithms are
invalidated when applied to UWB.

The algorithm which addresses the channel channel shortening
in the most primitive way and can be applied to any system in
general is maximum shortening signal to noise ratio (MSSNR)
algorithm. In this paper, we modify the MSSNR algorithm
to exploit the UWB characteristics and make it capable to
handle the extreme nature of channel shortening needed in UWB
systems. The proposed algorithm does not need any training or
channel estimation and outperforms MSSNR algorithm in terms
of different comparative parameters.

Index Terms— Channel shortening, RAKE receiver, ultra wide
bandwidth (UWB), MSSNR.

I. I NTRODUCTION

Channel shortening equalizers (CSEs) or time domain
equalizers (TEQs) are in use in communication systems since
early 1970s [1], [2]. Most of the recent applications of CSEs
are specifically developed for multicarrier modulation (MCM)
systems [3]- [6], [9] to mitigate intersymbol interference (ISI)
and intercarrier interference (ICI) produced due to inadequate
cyclic prefix (CP). These algorithms exploit some of those
parameters explicitly available in MCM systems. A major
problem encountered in UWB systems is to capture enough
multipaths through a complex RAKE [8] to maintain a suffi-
cient signal to noise ratio (SNR) for further signal processing.
CSEs can also greatly simplify UWB receiver structure by
reducing the channel delay spread [7], [15]. As UWB systems
have entirely different architecture and channel models, new
or modified channel shortening algorithms exploiting UWB
features are required to address the specific needs of UWB
systems.

Remaining of the paper is organized as follows: In section
II and III, we briefly discuss the UWB channel models and
the signal format used respectively. Section IV describes

the assumed system architecture and associated mathematical
model. Section V explains the underlying assumptions and
mathematical structure of proposed modified MSSNR algo-
rithm. Simulation results are shown in section VI and section
VII concludes the discussion.

II. CHANNEL MODEL

Based on measurement campaigns carried out by different
researchers [10]- [12], for a wide variety of propagation
scenarios, IEEE802.15 Study Group 3a has finalized four
standard models for UWB channels [11]. In this paper we
use these standard channel models, namely CM 1 to CM 4, to
develop and evaluate the performance of CSE. These channel
models are modified versions of Saleh-Valenzuela (S-V) model
[13] and generated to fit different propagation scenarios. They
take, in general, the following mathematical form:

h(t) = X

L∑
l=0

K∑
k=0

αk,lδ(t − Tl − τk,l), (1)

whereαk,l are the multipath gain coefficients,Tl is the delay
of the lth cluster,τk,l is the delay ofkth multipath component
relative to thelth cluster arrival timeTl, L is the number of
clusters,K is the number of multipaths within a cluster and
X represents the log-normal shadowing.

III. SIGNAL FORMAT

To develop CSE, we assume the first derivative of Gaussian
function as the transmitted pulse which is also the most
commonly used pulse shape in available UWB literature and
hardware [14]. Assumingg(t) is the transmitted pulse shape,
for a binary time hopping (TH) UWB signal employing pulse
position modulation (PPM), a symbol transmitted byjth user
can be given as:

sj(t) =
N−1∑
i=0

g(t − iTf − cj,iTc − aj∆), (2)

wheresj(t) is the symbol transmitted by thejth user,Tf is
pulse repetition period,N is the number of repetitions,Tc is
TH chip period,cj,i is the TH sequence forjth user,aj ∈
{0, 1} and� is the delay to represent a binary symbol.
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IV. SYSTEM ARCHITECTURE

The received symbol fromjth user is the convolution
between (1) and (2), therefore:

rj(t) =
∞∑

m=0

L∑
l=0

K∑
k=0

Xj αk,lδ(t − Tl − τk,l)sj(m − t), (3)

where we assumed that the channel impulse response (CIR)
does not exist whent < 0.

The above equation in a multiuser environment havingNu

simultaneous active users experiencing same channel length
with additive white Gaussian noise (AWGN) can be rewritten
as:

rj(t)=
Nu∑
j=1

∞∑
m=0

L∑
l=0

K∑
k=0

Xjαk,lδ(t − Tl − τk,l)sj(m − t)+n(t),

(4)

wheren(t) is additive white Gaussian noise.
Since the transmitted pulseg(t) is very narrow in time,

it can be approximated to an impulse as compared to the
channel delay spread. Thus, if a single pulse is transmitted,
the received pulse will quite accurately reveal the CIR. This
is a characteristic feature of UWB systems and not available
in other systems where pulse/bit duration is comparable to
channel delay spread. Hence, a CSE which can shorten the
received signal is also capable of shortening the CIR, provided
that each user transmits a single pulse in synchronization with
others. Assume that the CSE shortens the channel to theK ′th
multipath of theL′th cluster. In this case, the above equation
can be split into two parts with respect to channel taps as
follows:

rj(t)=
Nu∑
j=1

∞∑
m=0

L′∑
l=0

K′∑
k=0

Xj αk,lδ(t − Tl − τk,l)sj(m − t)

︸ ︷︷ ︸
r(p,1)

1

+

Nu∑
j=1

∞∑
m=0

L∑
l=L′

K∑
k=K′+1

Xjαk,lδ(t−Tl−τk,l)sj(m−t)+n(t)

︸ ︷︷ ︸
r(q,1)

2

. (5)

Or alternatively, each part in (5) can be given in matrix form
as:

r(p,1)
1 �

Nu∑
j=1

Xj S(p,ϕ)
j h(ϕ,1)

1,j

and r(q,1)
2 �

Nu∑
j=1

Xj S(q,ϕ′)
j h(ϕ′,1)

2,j + n(q,1), (6)

where Sj is the convolution matrix of appropriate order for
jth user transmitted signal vectorsj , h(ϕ,1)

1,j andh(ϕ′,1)
2,j are the

splitted parts of channel vectorh(LK,1)
j . The parentheses show

the order of each matrix or vector such thatϕ = (L′−1)K +
K ′, ϕ′ = K(L−L′ +1)−K ′, p = ϕ+ b− 1, q = ϕ′ + b− 1,
where b is the length of transmitted signal vectorsj . It is
worthy to note that the effective noise componentn(q,1) is
added only inr(q,1)

2 to simplify the expression.

V. M ODIFIED MSSNR ALGORITHM

Let w be the CSE such that:

w = [w0 w1 w2 · · · wd−1]T , (7)

whered is the number of CSE taps.
If the CSE is inserted before the RAKE reception then the

received signal applied to the RAKE is:

r = (R(η,d)
1 + R(η′,d)

2 )w, (8)

whereR(η,d)
1 andR(η′,d)

2 are the convolution matrices ofr(p,1)
1

andr(q,1)
2 respectively,η = d + p − 1 andη′ = d + q − 1.

Several CSE designs formulate a single Rayleigh quotient to
be optimized and in general take the following mathematical
form:

wopt = arg max
w

wHBw
wHAw

, (9)

The solution to this problem is to maximize the numerator
keeping denominator constant or minimize the denominator
with constrained numerator. Thus, an optimum CSE is the
generalized eigenvector corresponding to largest or small-
est generalized eigenvalue respectively of appropriate matrix
pairs. Constrained are applied to avoid some trivial solutions.
The algorithm which deals channel shortening in a very
primitive sense is maximum shortening signal to noise ratio
(MSSNR) [16]. In this algorithm, the channel energy outside
the shortened window is minimized keeping the energy within
the window constant. This solution assumes thatd < ϕ,
violation of this assumption results in a situation whereB can
not be decomposed through Cholesky factorization. In case of
UWB channels, we need a comparatively largerd which could
efficiently shorten the dense multipath channel. This makes
d > ϕ and thus normal solution does not work. A variant of
[16] is [17] which works the other way round and hence a
CSE withd > ϕ is possible. Here, we modify [17] to work
in UWB scenarios.

In the proposed algorithm, we define a unique Rayleigh
quotient be maximized. From (8), the signal energy within the
shortened channel window and outside can be given as:

λwin � wT [R(η,d)
1 ]T R(η,d)

1 w (10)

λwall � wT [R(η′,d)
2 ]T R(η′,d)

2 w. (11)

To efficiently shorten the channel, an optimumw will maxi-
mize λwin keepingλwall constant.

Since UWB CIRs exhibit a sort of exponentially decaying
profile, therefore the signal amplitude is larger in beginning
and reduces with time. As we assumed the shortened channel
window is spanning over first(L′ − 1)K + K ′ multipaths,
therefore some statistical parameters associated to shortened
channel window and the rest of the CIR can be optimized to
improve CSE performance. Hence we define and include the
following parameters in the optimization problem:

The second moment ofr(p,1)
1 about the mean ofr(q,1)

2 is:

θ(p,1) � E[diag(γγT )], (12)

2 International Symposium on Antennas and Propagation — ISAP 2006



where

γ � r(p,1)
1 − µr2 u(p,1), (13)

in whichµr2 = E[r(q,1)
2 ] andu(p,1) contains all elements equal

to 1.
The additional parameter to be included in optimization is

ψ:

ψ � wT [Θ(η,d)]T Θ(η,d)w, (14)

whereΘ(η,d) is the convolutional matrix ofθ(p,1).
This parameter basically addresses the signal amplitude

level difference within and outside the shortened channel
window. This can be optimized to force the channel taps in a
certain region to their minimum or maximum.

The second parameter is the gradient ofr(p,1)
1 :

ξ(p,1) � ∇r(p,1)
1 , (15)

where∇ is gradient operator. Hence, the other optimization
parameter is:

ζ � wT [Ξ(η,d)]T Ξ(η,d)w, (16)

whereΞ(η,d) is the convolutional matrix ofξ(p,1).
This parameter exploits the decaying characteristics of the

CIR and can be optimized to increase or decrease the decaying
factor within or outside the shortened channel window.

Therefore, based on (10), (11), (14) and (16) we define the
following optimization problem for the proposed algorithm:

wopt = arg max
w

λwin

λwall + ψ + ζ
. (17)

Replacing the values:

wopt = arg max
w

wT
(

RT
1 R1

)
w

wT
(

RT
2 R2 + ΘT Θ + ΞT Ξ

)
w

. (18)

where parentheses depicting the order of each matrix has been
removed for concise representation.

The above equation poses a traditional optimization problem
as in (9) with:

B = RT
1 R1 (19)

and A = RT
2 R2 + ΘT Θ + ΞT Ξ. (20)

Hence:

wopt = (
√

A
T
)−1âmax (21)

where âmax is the eigenvector corresponding to maximum
eigenvalue of(

√
A)−1B(

√
A

T
)−1 and

√
A is the Cholesky

factor of A.

1 2 3 4
0

10

20

30

40

50

60

70

80

90

Channel Model Number

C
ha

nn
el

 E
ne

rg
y 

C
ap

tu
re

d 
W

ith
in

 2
0 

T
ap

s 
(%

)

Proposed Algorithm
MSSNR

Fig. 1. Channel energy captured within 20 taps of shortened window in
a single user and noise free environment. For CM1 and CM2 d=50 and for
CM3 and CM4 d=75.
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Fig. 2. Channel energy captured within 20 taps of shortened window in a
multiuser AWGN environment with Nu=10. For CM1 and CM2 d=50 and for
CM3 and CM4 d=75.

VI. SIMULATION RESULTS

Extensive simulations are performed to obtain a fair compar-
ison between the proposed algorithm and MSSNR algorithm in
standard UWB channel models. Figure 1 shows the channel
captured energy within a shortened channel window of first
20 multipaths in a single user and noise free environment.
The value ofd = 50 for CM 1 and CM 2, and d = 75 for
CM 3 and CM4. CSE length is chosen Figure 2 depicts the
comparative performance of both algorithms in a multiuser
AWGN environment withNu = 10. Remaining of the factors
remain same as in previous case.

Both figures clearly indicate that the proposed algorithm
outperforms the MSSNR algorithm in terms of energy capture.
It is observed that MSSNR algorithm’s performance gradually
decreases with increasing SNR in a multiuser environment
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whereas the proposed algorithm performs gradually better.
The performance enhancement is a result of inclusion channel
statistics in the optimization problem.

VII. C ONCLUSION

In this paper, we presented a modified version of MSSNR
algorithm which exploits characteristic features of UWB com-
munications systems and useful channel statistics for per-
formance improvement. It is shown through simulations that
these modifications enhance the performance of algorithm in
UWB environment. Hence, this algorithm enables a simplfied
RAKE structure with less of number fingers but still capturing
good percentage of channel energy. Receiver’s front end
simplification simplifies the whole receiver structure and the
further signal processing involved. Such a RAKE incurs less
manufacturing cost from hardware implementation point of
view.
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