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1. Introduction 
  Microwave imaging is an electromagnetic (EM) inverse scattering application that has played 
an important role in various fields such as radar, remote sensing and biomedical applications. By 
subjecting the object under investigation (OUI) to microwave radiation, the measured scattered fields 
are used to produce images which are maps of spatial distributions of EM profiles inside the OUI. 
 
  However, for penetrable dielectric objects, especially the heterogeneous case, the incident 
wave is scattered in all directions and is likely to undergo multiple reflections. Therefore the measured 
scattered fields do not possess a linear relationship with the spatial distribution of dielectric properties 
inside the OUI. To further complicate the situation, the evanescent waves are not measured and the 
high spatial frequency information is lost as the result of this. Hence the process of reconstructing 
microwave images is a difficult task as it needs to solve a complex EM inverse scattering problem. 
 
  In general, this nonlinear and strongly ill-posed problem is often being modeled as a global 
optimization problem and is solved by iterative techniques such as Newton-Kantorovitch method 
(NKM) [1] and modified gradient method (MGM) [2]. At each iterative process, the measured 
scattered field is compared with the scattered field computed from the numerical model of OUI and 
EM profiles of the model is then progressively adjusted by minimizing the error between these two 
sets of data. It has been shown in many publications that both NKM and MGM can be successfully 
applied to solve two-dimensional (2-D) problems, but for three-dimensional (3-D) cases the work 
reported in the literature are quite limited [3], [4]. The difficulty involved in applying NKM and MGM 
to 3-D problems are caused by the requirement of an accurate initial estimate of the OUI. As both 
NKM and MGM are based on the deterministic optimization methods (DOMs), without an accurate 
initial estimate, the solution could get trapped in a local minimum. In addition, an inversion of large 
dimensional matrices is required for NKM, which makes it even more difficult to be applied in 
practical 3-D cases. To bypass the difficulties presented in these techniques, inversion algorithms that 
are based on the stochastic optimization methods (SOMs) such as genetic algorithm (GA), simulated 
annealing (SA) and artificial neural networks (ANN) have been proposed [5]-[7]. 
 
  In this paper we consider the use of micro-genetic algorithm (m-GA), an enhancement to the 
conventional GA, to the reconstruction of microwave images of 3-D dielectric objects. The paper is 
organized as follows. In section 2, the formulation of 3-D microwave imaging problem is presented 
along with the description of m-GA and its application on solving the inverse scattering problem. In 
Section 3, we provide some simulation results of the reconstructed images, and finally the conclusion 
is presented in Section 4. 
 
2. Theoretical Formulation 
  For 3-D heterogeneous scatterers, the scattered field can be computed using volume integral 
equations. We let si EEE

rrr
 and  ,  denotes the total field, incident field and scattered field, respectively 

and si EEE
rrr

+= . Suppose a 3-D dielectric scatterer is characterized by its complex permittivity, ε, 
which is defined by ( ) 00/ εωεσεε jr −= . By using the volumetric equivalence principle, the 
dielectric scatterer may be replaced by an equivalent electric current density radiating in free space, i.e. 
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where n̂  is a unit outward normal vector to the surface of the scatterer and G is the Green’s function 
defined by 
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where ( ) ( ) ( )222 ''' zzyyxxR −+−+−=  and k is the wave number. 
 
  By using (1) and (2) we can relate the unknown current density J

r
 to the known incident field 
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and obtain the expression below 
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After the current density J
r

 is determined from (4), secondary quantities of interest such as the 
scattered field and bistatic radar cross section can be easily computed. 
 
  This procedure of calculating the EM field with given source and spatial distribution of 
dielectric properties of the scatterer is called the forward scattering problems. On the other hand, the 
inverse scattering problems requires to the procedure of finding the spatial distribution of dielectric 
properties of the scatterer from a known source as well as the measured EM field values on receivers. 
 
  In this paper, we are interested in applying m-GA to solve the 3-D inverse scattering problem. 
As mentioned in the introduction, m-GA is an enhancement to the conventional GA. Like GA, it is 
also a stochastic optimization technique that is based on Darwin’s theory of natural evolution. With m-
GA, it does not employ a large population size like the conventional GA and it is capable of 
preventing premature convergence for the solution while assuring a rapid convergence rate to the near-
optimal regions. 
 
  To solve the 3-D inverse scattering problem, we first assume the OUI is contained inside an 
investigation domain and the investigation domain is partitioned into a number of sub-volumes. The 
dielectric property of each sub-volume is assumed to be constant. The field scattered by the OUI is 
measured at the observation planes, which in this case is located outside the investigation domain.  
 
  We start by generating some investigation domains with random dielectric properties for the 
sub-volumes. These investigation domains are then encoded into a set of binary strings for the 
formation of m-GA population. The population of m-GA will undergo the usual selection and 
crossover process as with the conventional GA, but omitting the mutation operation. Instead of the 
mutation operation, it uses a population restart scheme to maintain its population diversity and at the 
same time elitist operator is applied to ensure the fittest individual is migrated from one generation to 
the next. The goal here is to apply m-GA to minimize the discrepancy between the measured and 
computed values of the scattered field. Therefore, we define the cost function (CF) of m-GA as the 
normalized root mean square error between the measured and computed values of sE

r
, i.e. 
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where V, )( and )( v
s
compv

s
meas EE ρρ are the total number of measurement points, measured and 

computed values of sE
r

 at location ρv, respectively.  
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3. Simulation Results 
   To demonstrate the use of m-GA in solving 3-D microwave image reconstruction problems, 
we have considered the scenario described in the first example of [4]. In this particular case, a cubic 
region of side length λ0 is considered as the investigation domain, where λ0 is the wavelength in free 
space. The investigation domain is partitioned into 27 cubic cells (side length = λ0/3) and one of the 
cell is occupied by the OUI, as illustrated in Fig. 1. The OUI considered in this computer simulation is 
a homogeneous lossless scatterer, characterized by a relative dielectric permittivity εr = 6. 
 
  Outside the cubic investigation domain there are six observation planes parallel to each 
surface of the investigation domain. Each observation plane has 49 measurement points equally spaced 
over an area of λ0×λ0, and the distance between the centre of the investigation domain and each 
observation plane is equal to λ0. Fig. 2 shows the horizontal cross-sectional view of this arrangement. 
 
  The investigation domain is illuminated by a plane wave of incident frequency f0 = 2.45GHz. 
The incident plane wave is propagating along the z-axis, while the electric field vector is polarized 
along the y-axis. 
 
  For the implementation of m-GA, we have used 5 chromosomes to make up the m-GA 
population, i.e. Npop = 5, and for each chromosome there are 27 genes representing the relative 
dielectric permittivity of the sub-volumes for the investigation domain, i.e. Ngene = 27. Other assumed 
parameters are: Nbit (Number of bits per gene) = 4, Pc (probability of crossover) = 0.8, Pth 
(convergence threshold for initiating the population restart scheme) = 0.9. The m-GA is set to 
terminate its iterative process when CF ≤ 0.005 or Nit (number of iterations) = 1500. 
 
  Also, to investigate the effect of noise, additive white Gaussian noise is added to the synthetic 
measured data, and Figs. 3(a)-(c) shows the reconstructed spatial distribution of εr for the three layers 
of the investigation domain when SNR = 20dB. 
 
  From the results shown in Figs. 3(a)-(c), it is clear that m-GA have successfully determined 
the spatial distribution of εr inside the investigation domain with reasonable accuracy, and a significant 
contrast in εr between the scatterer cell and other empty cells can also be visualized. 
 
4. Conclusion 
  In this paper, we have successfully demonstrated the use of m-GA to reconstruct microwave 
images that shows the spatial distribution of dielectric properties for 3-D dielectric objects. We have 
obtained excellent results on dielectric reconstructions though our simulations and we are currently 
investigating the potentialities of this technique for other microwave imaging applications. 
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Fig. 1. The cubic investigation domain is 

partitioned into 27 sub-volumes. The shaded 
area indicates the dielectric scatterer. 

 

                 
Fig. 2. Horizontal cross-sectional view of the 

arrangements for the investigation domain and 
observation planes. 

 

 
Fig. 3(a) Spatial distribution of εr for the top 

layer of the investigation domain. SNR = 20dB. 

 

 
Fig. 3(b) Spatial distribution of εr for the middle 
layer of the investigation domain. SNR = 20dB. 
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Fig. 3(c) Spatial distribution of εr for the bottom 
layer of the investigation domain. SNR = 20dB. 
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