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I. Introduction 
Inverse scattering in electromagnetic waves has found numerous applications in various 
industrial and medical aspects. In this paper, we discuss a new method for the shape 
reconstruction of perfectly conducting three-dimensional plates from simulated radar 
cross-section (RCS) data using Non-Uniform Rational B-spline (NURBS) modeling and 
optimization algorithms. The two-dimensional case was investigated before in [1].A 
three-dimensional body can be modeled  by some NURBS surfaces efficiently which are 
able to manipulate both free-form and primitive quadratic surfaces with a low number of 
patches and therefore with a small amount of information([2]). The proposed method for 
solving the direct problem is mostly based on [3] .The inverse problem is solved by 
optimizing the geometrical parameters of NURBS surfaces corresponding to the optimal 
shape matching the RCS data. A modified genetic algorithm is applied for this purpose. 
 

II. The Forward Problem  
The forward problem is formulated by computation of monostatic radar cross-section (RCS) 
of the target using the physical optics approximation and then calculating the backscattered 
fields in the far-field region. The RCS is a function of frequency, polarization and angle of 
incidence wave as well as the shape composition and texture of the target. The RCS for a 
three-dimensional target under a plane wave illumination in the far field region is given by: 
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where iE  and sE  are the incident and scattered field respectively . The proposed scattering 
problem considers just simple large bodies in comparison with operating wavelength. 

Proceedings of ISAP’04, Sendai, JAPAN

ISBN: 4-88552-206-4   C3055©IEICE - 609 -

2E4-5



Therefore the scattering regime is high-frequency and the physical optics approximation is 
quite applicable. Under these assumptions, given an incident monochromatic plane wave 
using far-field approximation, the backscattered field of an arbitrary conducting body is given 
by: 
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I  is called the physical optics(PO) integral. In (2) S ′  is the illuminated surface of the 
body,λ  is the operating wavelength, 0E is the polarization vector of electric incident field, 

 is the normalized wave vector, k̂ r′ is the surface point vector corresponding to ,while sd ′
)r′(n̂  is the orthonormal vector to the surface at this point. Consequently, according to the 

definition of RCS, we can easily write:  
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The next step is target modeling with the NURBS patches. NURBS modeling provides 
important advantages in the description of bodies for RCS computation. It is a rational 
piecewise polynomial parametric surface, defined by an ordered set of control points and 
corresponding weights ([2]). It can also be written as a combination of rational Bezier patches 
that is more suitable for numerical computation of parameters associated with geometry of the 
patch. A Bezier patch is also a polynomial parametric surface normalized with a weight 
function which is defined by two degrees, a mesh of control points, and a set of associated 
weights ([2]). The surface point of a rational Bezier patch is given by: 
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where ijb are the control points , ijω  are the control points weights, are the surface 

degrees and 

nm,
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i ,  are the Bernstein polynomials , given by : 
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In three- dimensional space, a circular cylinder by four Bezier patches and 16 control points 
and a sphere by eight Bezier patches and 26 control points can be well approximated. 
The main difficulty for predicting the RCS of complex bodies is the PO integral computation 
over an arbitrary shape. According to NURBS modeling, the PO integral can be expressed on 
the parametric coordinates of the Bezier patch writing the orthonormal vector function and the 
surface differential element in terms of partial derivatives of the surface point vector. 
Therefore the physical optics integral can be expressed by the following expression: 
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The method for computing the above PO integral on a Bezier patch depends on the topology 
of the surface. The patches are classified into three main types: 1) plane patches  
2) singly curved patches 3) doubly curved patches. If the Bezier patch is a plane surface, the 
normal vector on the surface is constant and the PO integral can be calculated by expanding 
the Gordon’s idea ([4]) for three-dimensional space. However, if a patch is from the second or 
third types, it is not possible to calculate the PO integral analytically and therefore the 
stationary phase method (SPM) and asymptotic integration are utilized ([3]). In fact, 
according to the physical assumptions in PO approximation, the SPM and its mathematical 
considerations are compatible with PO features. Also it is mentionable that the complex 
systems of equations which occur in stationary phase method for finding the critical points 
and segments in asymptotic calculations, are solved by a non-linear least squares optimization 
algorithm.  
 
III. The Inverse Scattering Problem 

For electromagnetic inversion, the inverse problem is cast into optimizing a set of parameters 
that affect the forward solution. Each iteration of the optimization process consists of tuning a 
set of parameters according to some rules and then solving the forward problem with the new 
parameters set and iterating the procedure. In all optimization methods used in inverse 
scattering, the forward problem is formulated in terms of unknown geometry or medium 
parameters to be optimized. In the proposed shape reconstruction algorithm, the values of the 
control points of a Bezier patch are optimized to find the optimal shape of the target matching 
the RCS data. The iterative nature of the algorithms and the ill-conditioned nature of problems 
make the algorithms somehow sensitive to the initial guess. These problems and also the local 
minima effects are solved by advanced optimization techniques such as the Genetic 
Algorithms (GA’s), at the expense of tremendous increase in the computation time ([5]). In 
this work, we use a genetic algorithm in which the objective function for a given generation is 
defined as follow: 
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where σ  and σ ′  are the goal and estimated RCS and K and i are generation and population 
indices respectively. Also θϕ ,  are the angles of spherical coordinates and f is the incident 
frequency. It is remarkable that the probability quantity of the mutation operator in designed 
genetic algorithm dynamically varies for better convergence and this algorithm can 
reconstruct the shape of the target efficiently without any initial assumption about the target 
geometrical characteristics. 
 
  IV. Results 
Here we illustrate the performance of the proposed algorithm by first considering perfectly 
conducting 40 o  cylindrical sector with height of 1.5 m  and radius of 1m represented by 6 
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control points at f = 1GHz illumination (Fig. 1). As a second example, we consider the 
perfectly conducting spherically curved plate with radius of 1m over a beam of 90 o for θϕ ,  
angles ,represented with 9 control points at f = 3 GHz illumination (Fig. 2). 
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          (a)                     (b)                        (c) 
Fig. 1- (a) original shape (b) reconstructed shape (c) RCS comparison of original and reconstructed        
shape 
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           (a)                     (b)                        (c) 
Fig.2- (a) original shape (b) reconstructed shape (c) RCS comparison of original and reconstructed 
shape  
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