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1. Introduction

The inverse scattering problem estimating unknown properties of scattering objects from the
measured electromagnetic-field data outside the objects has gained much interest in a large area
of applications such as medical imaging, geophysical exploration and nondestructive testing.
Since the relation between the properties and the scattered field is generally nonlinear, an
iterative numerical method is often required to solve the problem. During the last few decades,
many iterative methods have been presented in frequency domain [1]-[5] or time domain[6], [7].
Most of them have applied a gradient method using the derivatives of the objective function
to the estimation procedure.

In this article, we discuss a frequency-domain iterative method for the reconstruction of
a lossless dielectric cylinder. A cost functional is defined as the error between the measured
scattered field and calculated one, and minimized by using the Barzilai-Borwein steepest de-
scent (BB) method [8]-[10]. The BB method does not guarantee a descent in the objective
function at each iteration, but achieves better performance than the classical steepest descent
(SD) method. Also, it has the feature that the stepsize in the reconstruction procedure can be
found with simplicity and computational efficiency. Numerical results show the validity of the
presented method by comparing with the conjugate gradient (CG) and the SD methods.

2. Formulation

Let us consider a dielectric cylinder with a relative permittivity εr(ρ) and an arbitrary
cross section S which is invariant in the z axis, as illustrated in Fig. 1. The position vector is
denoted by ρ. The cylinder is illuminated by TM incident waves due to a line source located
at transmitter points ρ` (` = 1, 2, · · ·L). The scattered field is measured at receiver points
ρm (m = 1, 2, · · ·M). We suppress the time-harmonic dependence exp(jωt) in this article.

The contrast χ(ρ), with respect to the relative permittivity of free space, is defined as

χ(ρ) = εr(ρ)− 1. (1)

Then the total field Etotz within the domain S satisfies the following integral equation

Etotz (ρ,ρ`) = E
inc
z (ρ,ρ`) + k

2
0

ZZ
S
χ(ρ0)G(ρ,ρ0)Etotz (ρ

0,ρ`)dρ
0, (2)

where Eincz is the incident field and k0 is the wave number of free space. The 2-D Green’s
function G is denoted by

G(ρ,ρ0) = − j
4
H
(2)
0

¡
k0
¯̄
ρ− ρ0¯̄¢, (3)

in which H
(2)
0 is the zeroth-order Hankel function of the second kind. The scattered field Esctz

measured at ρm is given by

Esctz (ρm,ρ`) = k
2
0

ZZ
S
χ(ρ0)G(ρ0,ρm)E

tot
z (ρ

0,ρ`)dρ
0. (4)
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Let us divide the domain S into N elementary square cells. Then the moment method is
employed in solving the integral equation (2) for the total field.

In order to reconstruct the relative permittivity of the cylinder, we minimize the cost
functional defined as

F (χ) =

LX
`=1

MX
m=1

¯̄̄
Ẽsctz (ρm,ρ`)− Esctz (χ,ρm,ρ`)

¯̄̄2
LX
`=1

MX
m=1

¯̄̄
Ẽsctz (ρm,ρ`)

¯̄̄2 , (5)

in which Ẽsctz and Esctz are, respectively, the measured scattered field and the calculated one
from the estimated value of the relative permittivity. The contrast χ is the N × 1 column
vector. Since the minimization of the cost functional (5) is a nonlinear optimization problem,
one usually introduces an iterative method to solve the problem. In this article, we apply the
BB method to the nonlinear optimization problem.

3. Barzilai-Borwein steepest descent method

Now suppose iteration kth contrast χk are known, we may update χk by

χk+1 = χk + αkdk, (6)

where αk is a stepsize and dk is the N×1 update direction vector. The update direction vector
is chosen by the following formula same as the SD method

dk = −gk. (7)

The gradient column vector g of the cost functional is given by

gn = k
2
0

LX
`=1

MX
m=1

Etotz (ρn,ρm)E
tot
z (ρn,ρ`)

·
h
Esctz (χ,ρm,ρ`)− Ẽsctz (ρm,ρ`)

i
, n = 1, 2, · · · , N, (8)

where · indicates the complex conjugate and ρn denotes the center of the nth cell. The stepsize
αk is generally chosen by minimizing F (χk + αkdk) with a line search. Consequently, it takes
expensive computational cost to determine αk since one has to solve the forward problem many
times at each iteration. On the other hand, in the BB method [8]-[10], the stepsize is derived
by regarding Hk = αkI as an approximation to the Hessian inverse of F at χk and imposing
some quasi-Newton property on Hk. By minimizing ||∆χk − αk∆gk||2, in which we define
∆χk = χk − χk−1 and ∆gk = gk − gk−1, the stepsize is obtained by

αk =
h∆χk,∆gki
h∆gk,∆gki

, (9)

in which h·, ·i is the scalar product of the vectors. By symmetry, another stepsize may be
determined by minimizing ||α−1k ∆χk−∆gk||2. The corresponding stepsize is given the following
equation

αk =
h∆χk,∆χki
h∆χk,∆gki

. (10)

We are concerned with the stepsize (9) in this article, although it is not clear that the properties
of those are all similar.
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4. Numerical Results

As a numerical example, we apply the BB method to the reconstruction of a lossless homo-
geneous cylinder with the relative permittivity 1.8 and radius 0.8λ, where λ is a wavelength of
free space. The performance of the method is compared with the CG (Polak-Ribière-Polyak)
and the SD methods in which the stepsize is determined by a line search at each iteration. The
domain S is assumed to be the 2λ × 2λ square domain, and divided by 24 × 24 elementary
cells. The transmitter and receiver points are, respectively, 36 points equally spaced along a
circle with radius 2λ. All the initial values of the contrast are chosen equal to zero as the
relative permittivity is the same as the value of free space, and all the estimation procedures
are terminated when the cost functional is less than 10−5. In order to compare the accuracy
of the reconstruction results, we introduce the relative permittivity error defined as

η =

ZZ
S

¯̄
ε̃r(ρ)− εr(ρ)

¯̄
dρZZ

S

¯̄
ε̃r(ρ)|dρ

, (11)

where ε̃r and εr are exact relative permittivity and estimated one, respectively.
Figure 2 shows the evolution of the cost functional as a function of iteration. The solid,

dotted and long-and-short dashed lines present the BB, CG and SD methods, respectively.
In the BB, CG and SD methods, respectively, the estimation procedures are terminated after
63, 98 and 187 iterations and the total computation times are approximately 10, 210 and 384
minutes on a personal computer with an Atholon XP 1900+ (1.6-GHz CPU). It is seen from
these results that the convergence speed and the computation time of the BB method is much
faster than those of the CG and the SD methods.

Figures 3(a) and (b) illustrate the exact distribution and the cross sectional view of the
final reconstruction results sliced along the axis y = 0, respectively. The thin solid line shows
the exact distribution. The relative permittivity errors η are 5.68 × 10−2, 5.98 × 10−2 and
5.45 × 10−2 for the BB, CG and SD methods, respectively. From Fig. 3 and the values of η,
we can comprehend that any method is obtained correspondingly the good estimated results
in this case.

From these results, it is confirmed that the BB method has faster convergence and less
computation time than those of the CG and the SD methods in order to gain a desirable
accuracy of the reconstruction.

5. Conclusion

In this article, we have applied the BB method to a frequency-domain inverse scattering
problem. The stepsize is simply derived by imposing some quasi-Newton property in the BB
method. Numerical results for the reconstruction of a lossless dielectric cylinder showed that
the method is more effective than the CG and the SD methods in terms of the convergence
speed and the computational cost. In the future studies, we will evaluate the perfomance of
the method for the case that the measured scattered field contains noises and multifrequency
scattering data is utilized.
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Fig. 1 Geometry of the problem. Fig. 2 Evolution of the cost functional
as a function of iteration.

(a) (b)

Fig. 3 Reconstruction of a lossless dielectric cylinder :
(a) exact distribution, (b) reconstruction results.
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