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1. Introduction
It is worthwhile studying the inverse scattering problem of reconstructing the internal

physical properties of an object from knowledge of the scattered microwaves with application
to medical diagnosis, underground prospection, and nondestructive examination. In numerous
previous studies, the problem is recasted to a nonlinear optimization problem that the scattered
wave by the reconstructed object is made to be close to the measured scattered wave, where
algorithms such as gradient methods or the genetic algorithm are used and the direct scattering
problem is solved repeatedly. In the case that the initial guess of the object is far from the
original one, we suffer from traps of local minimum. With the aim of decreasing the difficulty,
some researchers dealt with the source type integral equation and investigated the nonradiating
equivalent current which contributes nothing to the scattered waves outside the object[1, 2].

The authors have formulated the scattering problem using T-operator which transforms
incident waves to the equivalent currents, and have been studying the inverse scattering problem
based on the reconstruction of T-operator[3]. In this paper, the T-operator is expressed in a
matrix form by using orthonormal basis functions. As a result the matrix elements are separated
into two parts; one is directly measured from the scattered waves and the other is not. The
matrix with the first part is usually called the T-matrix[4]. We here call the matrix with the
two parts the extended T-matrix. An iterative algorithm is proposed where the object and
unmeasured elements are reconstructed by decreasing a residual error of the equivalent current
in the least square approximation. Numerical examples are also shown.

2. Formulation of the problem
Let us consider a scattering problem of a cylindrical object located in a region RV of

free space under E-wave time-harmonic excitations. The geometry is shown in Fig. 1. The
time factor exp(jωt) is suppressed hereafter. The object is described by the object function
ε∆(r′′) = εr(r′′) − 1, where εr is the dielectric constant. We denote the scattered wave by us,
which is measured in the region RS, the incident wave by uin, and the total wave by ut. These
waves and the object function satisfy the integral equations:

us(r) =
∫

RV

G(r, r′′)Jeq(r′′)dr′′, r ∈ RS (1)

ut(r′) = uin(r′) +
∫

RV

G(r′, r′′)Jeq(r′′)dr′′, r′ ∈ RV (2)

where G is Green’s function given by G(r′, r′′) = − j
4H(2)

0 (k|r′−r′′|), k is the wavenumber in free
space, H(2)

n is the Hankel function of the second kind of order n, and Jeq(r′) is the equivalent
current defined by

Jeq(r′′) = k2ε∆(r′′)ut(r′′) (3)
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Let RV be the circular region of |r′′| ≤ b and Jm be the Bessel function of order m. When
the inner product on RV is defined by 〈f(r), g(r)〉 =

∫
RV

f∗(r)g(r)dr, where the asterisk denotes
the complex conjugate, we find that the set of functions with two indices:

ηm′
m (r′′) =

1√
2πcm′

m

Jm(km′
m ρ′′) exp(jmφ′′), m = 0,±1,±2, · · · ; m′ = 1, 2, · · · (4)

is an orthonormal set on RV. Here, cm′
m is defined for normalization as cm′

m =
∫ b
0 J2

m(km′
m ρ′′)ρ′′dρ′′

and km′
m are determined as solutions of the equation

Jm(km′
m b)

km′
m Jm+1(km′

m b)
=

Jm(kb)
kJm+1(kb)

, for any m (5)

where km′
m < km′+1

m and there is only one solution k
I(m)
m satisfying km′

m = k. Once the orthonor-
mal set of functions {ηm′

m (r′′)} is specified, it may be possible to represent a given function
which is piecewisely continuous on RV by a linear combination of those functions.

We introduce the T -operator which builds up a relation between the any incident wave
and the equivalent current, using

Jeq(r′′) =
∫

RV

T (r′′, r′)uin(r′)dr′ (6)

Here we expand the T-operator in terms of the orthonormal functions as

T (r′′, r′) =
∑

m,m′

∑

n,n′
ηm′

m (r′′)
[
m′
mTn′

n

]
η∗n

′
n (r′);

[
m′
mTn′

n

]
=

∫∫

RVRV

η∗m
′

m (r′′)T (r′′, r′)ηn′
n (r′)dr′′dr′ (7)

We also expand Green’s function G(r′′, r′) in the same way and express its coefficient by
[
m′
mGn′

n

]
.

Because the shape of RV is circular, after some calculations we find
[
m′
mGn′

n

]
= 0 if m 6= n and[

m′
mGn′

m

]
= 0 if m′ 6= n′, m′ 6= I(m), and n′ 6= I(m).

For the sake of simplicity, let us suppose that incident waves are given by
uin(r′; n) = ηI(n)

n (r′), n = 0,±1,±2, · · · ,±N (8)
From Eqs.(6) and (7), the equivalent current by each incident wave are given by

Jeq(r′′; n) =
∑

m,m′
ηm′

m (r′′)
[
m′
mTI(n)

n

]
(9)

Green’s function is also written by

G(r, r′′) = − j
4

∑
m

H(2)
m (kρ)Jm(kρ′′) exp(jm[φ− φ′′]) for |r| > ∣∣r′′∣∣ (10)

Substituting Eqs.(9) and (10) into Eq.(1) and noting the orthonormality of
{
ηm′

m (r′′)
}
, we get

us(r; n) =
∑
m

(
− j

4

) √
2πc

I(m)
m

[
I(m)
m TI(n)

n

]
H(2)

m (kρ) exp(jmφ) (11)

From Eq.(11) we know that
[I(m)
m T

I(n)
n

]
is related to the scattered wave for any incident wave

(measured elements). In other words,
[
m′
mT

I(n)
n

]
for m′ 6= I(m) cannot be observed directly from

the scattered waves(unmeasured elements). Accordingly we can divide the equivalent current
into two components as

Jeq(r′′;n) = JM
eq(r′′;n) + JNM

eq (r′′;n) (12)

JM
eq(r′′;n) =

∑
m

ηI(m)
m (r′′)

[
I(m)
m TI(n)

n

]
, JNM

eq (r′′;n) =
∑

m, m′ 6=I(m)

ηm′
m (r′′)

[
m′
mTI(n)

n

]
(13)

3. Inverse algorithm
Let us introduce the cost functional defined by

Ω(JNM
eq (r′; n), ε∆(r′)) =

N∑
n=−N

∥∥Jeq(r′; n)− k2ε∆(r′)ut(r′; n)
∥∥2 (14)
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where ut(r′; n) is the total wave generated by Jeq(r′′; n) in RV and ‖f(r)‖2 = 〈f(r), f(r)〉. We
can reduce the inverse scattering problem to the minimization of Eq.(14) to find the optimal
ε∆(r′). We introduce a set of orthogonal functions {Φl} (l = 1, · · · , L) over RV, expand the
object function as ε∆(r′′) =

∑L
l=1 εlΦl(r′′) and get

[
p′
pF(l)m′

m

]
=

∫
η∗p

′
p (r′′)Φl(r′′)ηm′

m (r′′)dr′′,
[
p′
pH(l)n′

m

]
=

∑

m′

[
p′
pF(l)m′

m

] [
m′
mGn′

m

]
(15)

Here
[p′
pF(l)m′

m

]
and

[p′
pH(l)n′

m

]
are independent of the object and the equivalent current, and

calculated only once in advance at the beginning of simulations.
At first, we suppose that ε∆(r′) is constant and JNM

eq (r′; n) is variable, and rewrite Eq.(14)
into

Ω =
N∑

n=−N

∑

p,p′

∣∣∣∣∣
∑

m, m′ 6=I(m)

[
p′
pAm′

m

] [
m′
mTI(n)

n

]
−

[
p′
pBI(n)

n

]∣∣∣∣∣
2

→ min (16)

with
[
p′
pAm′

m

]
= δpmδp′m′ − k2

L∑

l=1

εl

[
p′
pH(l)m′

m

]
(17)

[
p′
pBI(n)

n

]
= k2

L∑

l=1

εl

[
p′
pF(l)I(n)

n

]
−

∑
m

[
p′
pAI(m)

m

] [
I(m)
m TI(n)

n

]
(18)

where δ is the Kronecker delta. Eq.(16) involves unknowns as
[
m′
mT

I(n)
n

]
of m′ 6= I(m) and is

equivalent to
∑

p,p′

∣∣∣∑m, m′ 6=I(m)

[p′
pAm′

m

][
m′
mT

I(n)
n

]− [p′
pB

I(n)
n

]∣∣∣
2
→ min for each n.

Next, we suppose that JNM
eq (r′; n) is constant and ε∆(r′) is variable, and rewrite Eq.(14)

into

Ω =
N∑

n=−N

∑

p,p′

∣∣∣∣∣
[
p′
pTI(n)

n

]
−

L∑

l=1

εl

[
p′
pC(l)n

]∣∣∣∣∣
2

→ min (19)

with [
p′
pC(l)n

]
= k2

([
p′
pF(l)I(n)

n

]
+

∑

m,m′

[
p′
pH(l)m′

m

] [
m′
mTI(n)

n

])
(20)

Equations (16) and (19) are solved as the linear least-squares problem using the QR
decomposition. The inverse algorithm is summarized as follows:

Step 1: Set the initial value of ε∆(r′).
Step 2: Update JNM

eq (r′; n) by Eq.(16).
Step 3: Update ε∆(r′) by Eq.(19) and go back to Step 2 and repeat Steps 2 and 3 until

convergence.

4. Numerical Examples
Assuming that the object is axisymmetric, we can find

[p′
pF(l)m′

m

]
= 0,

[p′
pH(l)m′

m

]
= 0,[p′

pAm′
m

]
= 0,

[p′
pB

I(n)
n

]
= 0,

[p′
pC(l)n

]
= 0, and

[p′
pT

I(n)
n

]
= 0 for p 6= m or p 6= n.

We will numerically reconstruct two kinds of circular cylinders: models A and B. Model
A is a homogeneous cylinder with ε∆ = 0.44(the refractive index is 1.2) and the radius is
λ, where λ = 2π/k is the wavelength in free space. Model B is an axisymmetric two-layered
cylinder whose inner layer has ε∆ = (0.8,−0.2) and the radius is 0.5λ and whose outer layer has
ε∆ = (0.4,−0.4) and the radius is λ. Each model is located at the origin. The RV radius b = 2λ
is used. Let Φl(r′′) be the pulse function such that Φl(r′′) = 1 for b(l − 1)/L < |r′′| < bl/L;
otherwise Φl(r′′) = 0 over l = 1, · · · , L, where L = 32 is used in this computation. The
sums of infinite series with respect to m and p in Eqs.(16) and (18)–(20) are truncated at
m, p = −N ∼ N , and also the sums with respect to m′ and p′ are truncated at m′, p′ = 1 ∼ 32.
Here, N = 10 is used in this case.
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Figure 2 shows the values of the cost functional Ω and of a residual error of the recon-
structed ε∆ as functions of the number of iterations. Both of the values decrease rapidly within
first 50 iterations and seem to almost converge after 100 iterations for both models A and B.
Figures 3 and 4 show the reconstructed profiles of both models, respectively. The computation
time for 200 iterations was 2 minutes by Compaq W8000 with Xeon 2.4GHz processor.

5. Concluding Remarks
As a result of the extended T-matrix expression in terms of orthonormal basis functions,

the measured elements of extended T-matrix, which are directly connected to the scattered
waves, can be extracted explicitly. We have proposed an iterative inverse algorithm where the
object and the unmeasured elements of extended T-matrix are updated by decreasing the cost
functional in the least square approximation. The algorithm avoids employing a nonlinear op-
timization algorithm and solving the direct scattering problem. Numerical examples show that
the algorithm works well for the objects for which the Born approximation becomes completely
invalid. The inversion algorithm will work more powerfully if we use a priori information about
the object and/or some frequency band.
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