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1. INTRODUCTION 
When the curvature of the boundary changes smoothly from concave to 

convex through the inflection point, conventional methods for separable 
problems. e.g . , uncoupled mode expansions, are no longer applicable. For 
perfectly conducting smooth boundaries with variable radius of curvature, 
intermode coupling can be neglected in a lowest order of approximation, and 
the problem in a concave boundary can then be reduced to determining adia
batic whispering gallery (WG) modes [1] ,[2]. which propagate without 
coupling by smoothly adapting to the slowly changing curvat ure . The adia
batic WG mode formalism breaks down in the concave-to-convex transition 
region surrounding the inflection po i nt [3] -[5] . 

However, by tracking modal ray congruences, ray methods can be employed 
even for modal fields [6] . Modal ray congruences are confined be t ween the 
modal caustic and the boundary on the concave side. and between the reflec
tion boundary and the shadow boundary of the moda l rays on the convex side . 
This permits an insight into the evolution of a WG mode as it approaches 
and passes the inflection point, and is converted into a beam-like wave and 
a creeping wave. The concave-to-convex conversion is schematized in Fig.l 
by tracing modal ray congruences . 

The characteristics of an initia lly well confined WG mode propaga ting 
from the concave toward the convex side have been explored by two methods . 
The first, based on the boundary layer near the surface, leads to a para
bolic equa t ion (PE) that is solved numerically [3]. This PE method gives 
sufficiently high accuracy in carrying out the computations near the bound
ary. The second assumes the Kirchhoff's surface currents to be approximated 
by the analytic continuation of the WG mode from positive to negative r adi
us of curvature, and then treats 
the resulting Kirchhoff integral 
asymptotically [41 The results 
obtained from the PE method have 
been used to estima te the 
of the results obtained 
Kirchhoff method [7]. The 

accuracy 
by the 

relative 
magnitude of the difference in the 
value of the wave fields computed 
by the two methods varies from 1% 
to 20% [7] .Therefore , one may pre
fer to use the PE me t hod to obtain 
the radiated beam accurately . How
ever. because validity of the PE 
method is inherently restricted to 
a narrow boundary layer near t he 
surface. the results cannot be 
propagated to large distances in 
the convex side from the poin t of 
radiation. 

In this paper, we examine a 
beam at large distances r adiated 
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t 

, 
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Fig.1. Propaga tion lIIechanisms for con
cave-to- convex boundary( (l ) . Modal ray 
tracing in ray tubes (shaded) 9chema
tlzes evolution of WG mode through in
Clection point (si) and excitation of 
creeping wave (tW) on convex side . RB: 
ref lection boundary; SB: shadow bounda
ry ; C: modal caustic. 
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by the adiabatic WG mode which is 
incident on an inflection point of 
the concave-to-convex boundary 
from the concave side. A theory is 
developed which takes into account 
for the beam field at large dis
tances from the radiation points. 
Predictions from the modal ray 
tracing will be compared with 
numerical solutions obtained from 
the new theory for a model surface, 
and will be used to interpret the 
numerical results. 

2. FORMULATION AND SOLUTION 
Let s be the arc length of the 

curve n and let q be the coor
dinate taken along the normal to 
the boundary at the point s (Fig.2). 
The radius of curvature a(s) is 

o~ 
S 

Fig.2 . 
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(s,q) ,(i{.'Y) .and (JI:;.y) coordinate 
systems on concave- t o-convex boundary. 
si (inflection point) and So (radiation 
point) are the origin of cartesian co
ordinate systems (X.Y) ami (x.y). re
spectively. a(s): radius of curvature 
at s . 

assumed to change smoothly from positive values, which describe the concav e 
boundary to negative values for the convex boundary, with the inflection 
point at 5-=51 where a(s1)= '" . We are looking for a high-frequency asymp
totic solution to Helmholtz equation: ( tJ. + k 2) u-O which vanishes on n. 
Where tJ. is the Laplacian in the (s,q) coordinate system [ 1], [5]. 
Assuming for u the parabolic ansatz 

u ~ U(S, q, k)exp(iks) 
one may reduce (1) to the following equation for U 

a' 
aq' 

u + 
a 

2ik - U 
a s 

1 
+ 2qk'

a(s) 
U~ 0 

2.1 Adiabatic Whispering Gallery(WG) Mode Solution 

( I ) 

(2) 

In the concave side a(s) > 0 of the concave-to-convex boundary, well away 
from the inflection point o r for the concave smooth boundaries with 
variable radius of curvature, the parabolic equation for U in Eq.(2) has 
solutions [1) .[2]: 

(3 ) 

where 
I / , 

and 

H( B )~( ai S >j-k-'13, (3a) 

Ai[-om] "" U, 01=1, 2, 3,--- (3b) 

Here, Ai is the Airy function and Om is the excitation coefficient of the 
m-th mode. Thus. the parabolic equation in (2) reduces to adiabatic WG 
modes. The adiabatic mode solutions in Fig.(3) fail when conditions change 
from concave to convex . The parabolic equation is implemented numerically 
"Where it cannot be reduce to the simpler asymptotic forms . 

2.2 Parabolic Equation Algorithm 
The parabolic equation in (2) remains valid at the transition 

where the radius of curvature changes smoothly from a(s» 0 to 
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region 
a (s) < 0 



through the inflection point si ' 
Near the inflection point where 
a(s) -+' 00 , the curvature K(s) can be 
approxima ted linearly as K(s)
l/a(s)--ao(s- si), where ao is a 
positive constant . Introducing the 
scaled coordinates. 

X-(S-Si)a02/S kl/S, Y-qs ol/Sk3/ 5 
(4) 

changes the parabolic equation in
to the frequency- independent form 

which is numerically expedient. The 
inflection point is located in X-D. 
To track the adiabatic WG mode 
from the well trapped concave side 
to the convex side, we have inte
grated the parabolic equation in 
(5) numerically, using a differ
ence equation marching scheme with 
the adiabat i c WG mode as input at 
some initial range Xo « 0 in the 
well concave region . Thus, we have 
obtained the beam-like wave and 
the creeping wave on the convex 
side which are excited by the adi
abatic WG mode . However. the beam
like wave cannot be propagated to 
large distances by the PE algo
rithm since the parabolic equation 
is restricted to the narrow region 
near the surface. 
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Fig . 3. Amplitude plot of dominant mode 
radiation from the exit of concave 
boundary with con!tant curva ture (K(s)-
20.944). The X coordinate coincides 
with the tangent t o the boundary at the 
exit. 
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Fig.4. Amplitude plot of adiabatic we 
mode radiation from the exit of con
cave boundary with variable cu rvature. 
(K(s)--87.730(s-O . 239), 8$0.239). 

2 . 3 Fresnel-Kirchhoff Diffraction Formula 
We now come to our principal objective : the beam field at large dis

tances excited by the adiabatic WG mode which is incident on the inflection 
point . We assume that at relatively large distances, the beam field is well 
approximated by the Fresnel- Kirchhoff diffraction formula [8], Then. refer
ring to the geometry shown in Fig.2, the beam field Gm(x,y) at the obse rva
tion point P in the (x,y) coordinate system may be obtained from 

Gm(X Y)1 k eikR-i n/4! G (0 y O )eik$(y!X,y)dyo 
'21T R 0 m , 

(61 

where 
x X

O 

4I(y' ,x'Y)=-R + 

R= I x' + y' 

(y 0 )' 

2R 

(y yO)' 
ZR 3 

+ - --

Here, Gm(O' ,y ' ) is the beam field distribution along the 
at x-O (or 5=50 ) near the inflection point s-si' We 
numerically by using the numerical solu tions for Gm(O,y') 
PE algorithm. 
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16 o j 

(6 bl 

aperture y-y':> 0 
integrate Eq.(6) 
obtained from the 



3. NUMERICAL RESULTS 
We implement numerically the new 

method developed in §2, in order to 
calculate the beam fields at vari
ous horizontal distances. The PE 
algorithm in Fq . (5) is initiated 
well in the concave side by the 
known ad iabatic WG mode input in Eq. 
(3), and evolves from there by a 
stepwise marching scheme. Passing 
through the inflection point, one 
confirms the radiation of a beam
like wave, exhibiting successively 
greater detachment from the concave 
surface. At the point s=so where 
the beam- like wave is just detached 
from the surface , the Fresnel
Kirchhoff formula in Eq.(6), is ap-
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Fig . S. Amplitude plot of beam-like wave 
radiation from 
cave - to-convex 
is defined as 

the point s-so of con
boundary . The curvature 
K(s)- - 87 . 7JO(s-O.Z39). 

plied to radiate the beam further away fr om the point of the detachment . 
The results for the various boundaries are plotted on the <X,Y) coordi

nate system (see Fig.2) in Figs . 3- 5. Fig.3 is the magnitude plots of beam 
fields radiated from t he exit of the concave boundary with the cons t ant 
curvature. The beam is radiated in the wide region between the reflection 
boundary and the shadow boundary . Fig.4 corresponds to the beam radiation 
from the variable radius of concave boundary. The narrow beam is radiated 
into the free space. One may note that the beam axis does not coincide with 
the X- coordinate or the tangent to the boundary at the exit, but is shifted 
slightly to the upper side. Fig.5 is the beam radiation from the 
concave-to-convex boundary. The beam width becomes very narrow , and the 
beam axis is again shifted to the upper side . 

4. CONCLUSION 
This analytical-numerical s t udy has furnished a basic understanding of 

the propagation phenomena over a concave-to- convex boundary excited by the 
whispering gallery (WG) mode . The theory char t s the progress of an adiabat
ic WG mode. initially trapped, through the inflection point to the convex 
side . The adiabatic WG mode solutions on the concave side and the beam-like 
wave on the convex side are connected through the transition 
the inflection point by the parabolic equa t ion algorithm. The 
radia ted to large distances by the Fresnel-Kirchhoff formula . 
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