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1.  Introduction 

Anisotropic media are used as polarizers, rotators and retardation plates in optical devices. The 
transmission and reflection from an anisotropic media has been already studied for the incident 
plane wave[1][2]. However, the interaction of Gaussian beams with an anisotropic media must be 
studied because these devices are operated under many laser systems in modern optical systems.  

One of our authors preliminarily presented a method to analyze the reflection and transmission of 
a Gaussian beam incident upon a uniaxial anisotropic slab with arbitrary optical axis[3][4]. Landry 
et. al investigated the Gaussian beam transmission and reflection from a general anisotropic 
multilayer structure[5]. However, the characteristics of a Gaussian beam at an anisotropic dielectric 
slab should be studied in more detail. 

In this paper, the transmission and reflection of a Gaussian beam from an anisotropic slab with 
arbitrary optical axis are presented. First, the wave equation is solved using the spectral domain 
method and Gaussian beams are represented by Fourier transform. Second, applying the boundary 
conditions, the TE and TM reflection and transmission coefficients are obtained in 2  2 matrix 
format. The final expressions of the beams are given in the forms of integrals and those are 
evaluated numerically using the FFT algorithm. The power field variations of transmitted and 
reflected beams are discussed for the thickness of slab. 

×

 
2.  Analysis 
2.1  Expression of an incident beam 

As shown in Fig.1(a), we consider the reflection and transmission of a Gaussian beam launched 
into an anisotropic slab. The boundary plane is the xy plane (at z=0, d), media 1 and 3 are isotropic 
media with the refraction indices ni and nt, and media 2 (thickness d) is anisotropic and its ordinary 
and extraordinary refraction indices are no and ne, respectively. Let s and p denote the unit vectors 
for the electric field polarization; k denotes wave vectors of the beams; + and – denote the forward 
and backward waves in the slab. The wave source is h away from the boundary and the basic mode 
Gaussian beam is incident at angle θ . The time variation )exp( tjω  has been suppressed. 

We consider that the optical axis c of the anisotropic medium has an arbitrary direction. As 
shown in Fig. 1(b), it is assumed that c makes angle δ  with the z-axis and the projection of c on 
the xy-plane makes angle φ  with the x-axis. 
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From the Maxwell equations, the wave equation of incident field Ei in the incident coordinate 

system (xi, yi, zi) is given by 
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where 0/ cnk ii ω=  is the magnitude of the wave factor in the incident region and c0 is the speed of 
light in vacuum. To solve the Eq.(2), we use the following Fourier transform: 

∫ ∫
∞

∞−

∞

∞−

+−= βαβα
π

βα ddezEzyxE ii yxj
iiiii

i )(
2 ),,(

4
1),,(  (3) 

 

Proceedings of ISAP’04, Sendai, JAPAN

ISBN: 4-88552-206-4   C3055©IEICE - 581 -

2E3-2



  

x 

y 

z 

ki kr 

ke- 

ko+ 

h 

ko- 
ke+ 

d 

(medium 3) 
Isotropic 
 nt 

(medium 2) 
 Uniaxially 

Anisotropic 
 ne, no 

(medium 1) 
Isotropic 
 ni 

Transmitted 
Beam Wave 

Reflected 
Beam Wave

si 
pi pr 

sr 

θ  θ  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1(a)  Uniaxially anisotropic slab and beams.  
 
By substituting Eq.(3) into Eq.(2), we obtain  
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Eqs.(2) and (4) is solved using Fourier transforms and trans
zi) and (x, y, z). The incident beam is, therefore, given in
polarization direction of the field are considered and it is e
and pi (TM wave) whose amplitudes are As and Ap, respecti
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where w1 and w2 are the spot size of the xi and yi axis, resp
the incident beam, si is a unit vector perpendicular to both 
vector perpendicular to both ki and si. 
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2.2 Expression of the reflected and transmitted beams 

Consider the phase matching and the radiation conditio
reflected and transmitted waves as well as the ordinary and 
are assumed to be 
[reflected wave] 
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[ordinary and extraordinary waves] 
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[transmitted wave] 
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where sr, pr, st, and pt are unit vectors of reflected and tran
on the other hand,  and  are unit vectors for the po±o ±e
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the optical axis c. 
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formation of coordinates between (xi, yi, 
 the general form by Eq.(5) where the 
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smitted waves in the isotropic medium, 
larization directions of the ordinary and 



extraordinary waves in the anisotropic medium: 
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Also, the magnetic field is given by 

EkH ×=
0

1
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In Eqs.(7)-(9), B, C, D and E (functions of α , β ) are the unknown coefficients of the electric 
field amplitudes and are determined from the continuity conditions in term of x, y components of 
the electric and magnetic fields at boundary surfaces (z=0 and d). 

Since the integral form of the beam wave cannot be found analytically, the FFT is used to 
evaluate the integrals numerically. 

 
3.  Numerical results 

Figs. 2(a)-(d) show the normalized power field distributions of the transmitted and reflected 
beams due to the s-polarized incident Gaussian beam whose beam spot size w is 988λ  (the beam 
center angle of incidence °= 30θ ) for the slab thickness d. The coordinate axes are normalized by 
the wavelength λ . The media 1 and 3 are chosen to be free space ( 0.1== ti nn ) and the medium 2 
is chosen to be a calcite (negative crystal; 6565.10 =n  and 4857.1=en ) and optical axis 
direction is taken to be °= 90δ and °= 45φ .  

Here Eqs.(7) and (9) were respectively transformed into reflected coordinates (xr, yr, zr) and 
transmitted coordinates (xt, yt, zt) from coordinates (x, y, z). The parameters are adopted for the 
FFT calculations as the following: 

Sampling point number  (along xαN r or xt) and  (along yβN r or yt)  

αN =32, =256 (13) βN
Sampling interval  (along xαt∆ r or xt) and βt∆  (along yr or yt) 
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Also, the normalized power field is calculated by 
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It is found that the reflected wave has two peaks (first and second reflection) as shown in Fig. 
2(c). The first reflection wave is a reflected wave at the boundary between media 1 and 2 when a 
beam wave is incident. The second reflection wave is a reflected wave that is reflected once at the 
boundary between the media 2 and 3 then emerges out of media 1.  

Corresponding to the reflected wave, the first transmission wave is seen as shown in Figs. 
2(a)(b), however, the second transmission wave almost equals to zero. In this case, the first 
transmission wave involves the ordinary and extraordinary waves that depend on the relation 
between an optical axis and an incident beam polarization. The power field  varies from 
minimum for d=7974.7 to maximum for d=7976.7 and it varies periodically for the slab thickness d. 
Conversely,  varies from maximum for d=7974.7 to minimum for d=7976.7, that is, the 
variation changes by half a period. 

t
ssP

t
spP

On the other hand, the first reflection wave does not change for the slab thickness d because it 
does not propagate through an anisotropic dielectric slab. The second reflection  changes by 
quarter a period compared with . Also,  changes by half a period compared with . 
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4.  Conclusions 

The characteristics of reflected and transm
beam is launched into the anisotropic dielectr
described. Solutions were numerically calcula
the transmission power field changes by half 
slab thickness d when first transmission wave i
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