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1. Introduction

Anisotropic media are used as polarizers, rotators and retardation plates in optical devices. The
transmission and reflection from an anisotropic media has been already studied for the incident
plane wave[1][2]. However, the interaction of Gaussian beams with an anisotropic media must be
studied because these devices are operated under many laser systems in modern optical systems.

One of our authors preliminarily presented a method to analyze the reflection and transmission of
a Gaussian beam incident upon a uniaxial anisotropic slab with arbitrary optical axis[3][4]. Landry
et. a investigated the Gaussian beam transmission and reflection from a general anisotropic
multilayer structure[5]. However, the characteristics of a Gaussian beam at an anisotropic dielectric
slab should be studied in more detail.

In this paper, the transmission and reflection of a Gaussian beam from an anisotropic slab with
arbitrary optical axis are presented. First, the wave equation is solved using the spectral domain
method and Gaussian beams are represented by Fourier transform. Second, applying the boundary
conditions, the TE and TM reflection and transmission coefficients are obtained in 2 x 2 matrix
format. The final expressions of the beams are given in the forms of integrals and those are
evaluated numerically using the FFT algorithm. The power field variations of transmitted and
reflected beams are discussed for the thickness of slab.

2. Analysis
2.1 Expression of an incident beam

As shown in Fig.1(a), we consider the reflection and transmission of a Gaussian beam launched
into an anisotropic slab. The boundary plane is the xy plane (at z=0, d), media 1 and 3 are isotropic
media with the refraction indices n; and n;, and media 2 (thickness d) is anisotropic and its ordinary
and extraordinary refraction indices are n, and ne, respectively. Let s and p denote the unit vectors
for the electric field polarization; k denotes wave vectors of the beams; + and — denote the forward
and backward waves in the slab. The wave source is h away from the boundary and the basic mode
Gaussian beam isincident at angle €. Thetime variation exp(jwt) has been suppressed.

We consider that the optical axis ¢ of the anisotropic medium has an arbitrary direction. As
shown in Fig. 1(b), it is assumed that ¢ makes angle ¢ with the z-axis and the projection of ¢ on
the xy-plane makes angle ¢ with the x-axis.
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From the Maxwell equations, the wave equation of incident field E; in the incident coordinate
system (X, Vi, Z) isgiven by
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where k. =nw/c, isthe magnitude of the wave factor in the incident region and c, is the speed of
light in vacuum. To solve the Eq.(2), we use the following Fourier transform:
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By substituting Eq.(3) into Eq.(2), we obtain
d°E,
d z + (ki —a® - p*)E; =0 @)
Z;

Egs.(2) and (4) is solved using Fourier transforms and transformation of coordinates between (x;, i,
z) and (x, y, z). The incident beam is, therefore, given in the general form by Eq.(5) where the
polarization direction of the field are considered and it is expressed as the sum of the s; (TE wave)
and p; (TM wave) whose amplitudes are As and A, respectively.

E'(x,y,2) = Wi—‘;VZjZ [" (As; +Ap)X (@ B)exp{- j(k, -r + h/ cosd)dadp (58)
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where w; and w, are the spot size of the x; and y; axis, respectively. Here, k; is the wave vector of
the incident beam, s; is a unit vector perpendicular to both y and k;, on the other hand, p; is a unit
vector perpendicular to both k; and s;.
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2.2 Expression of the reflected and transmitted beams

Consider the phase matching and the radiation conditions at the boundaries (z=0 and d). The
reflected and transmitted waves as well as the ordinary and extraordinary in the anisotropic medium
are assumed to be
[reflected wave]

E'(x,Y,2) =%jw [" (s, +B,p,)X (. B)exp{- j(k, -1 + h/cos6) dad @)
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[ordinary and extraordinary waves]
E™(X,Y,2) =Mr Iw (Coe ™ "+Cee ™ " +Doe™ "+D,ee ")
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[transmitted wave]
Et(x,y,z)z%f [* (s +Ep)X(a. fexpl- i(k, T+ h/ cosd) dadp )
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where s;, pr, St, and p; are unit vectors of reflected and transmitted waves in the isotropic medium,
on the other hand, 0, and e, are unit vectors for the polarization directions of the ordinary and
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extraordinary waves in the anisotropic medium:
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Also, the magnetic field is given by
He L kxE (12)
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In Egs.(7)-(9), B, C, D and E (functions of «, f) are the unknown coefficients of the electric

field amplitudes and are determined from the continuity conditions in term of x, y components of
the electric and magnetic fields at boundary surfaces (z=0 and d).

Since the integral form of the beam wave cannot be found analytically, the FFT is used to
evaluate the integrals numerically.

3. Numerical results

Figs. 2(a)-(d) show the normalized power field distributions of the transmitted and reflected
beams due to the s-polarized incident Gaussian beam whose beam spot size w is 988 4 (the beam
center angle of incidence @ = 30°) for the slab thickness d. The coordinate axes are normalized by

the wavelength A . The media 1 and 3 are chosen to be free space (n; = n, =1.0) and the medium 2
is chosen to be a calcite (negative crystal; n, =1.6565 and n, =1.4857) and optical axis
directionistakentobe 6 =90°and ¢ =45°.

Here Egs.(7) and (9) were respectively transformed into reflected coordinates (x:, y:, z) and

transmitted coordinates (X, Y, z;) from coordinates (x, y, z). The parameters are adopted for the
FFT calculations as the following:

Sampling point number N, (alongx, or x;) and N, (aongy: ory,)

N, =32, N,=256 (13)
Sampling interval At, (along x, or x;) and Atﬁ (along y, or yy)
At — iy 4 (14)
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Also, the normalized power field is calculated by
2
Prt, =[EL, /Eny] (15)
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It is found that the reflected wave has two peaks (first and second reflection) as shown in Fig.
2(c). The first reflection wave is a reflected wave at the boundary between media 1 and 2 when a
beam wave is incident. The second reflection wave is a reflected wave that is reflected once at the
boundary between the media 2 and 3 then emerges out of media 1.

Corresponding to the reflected wave, the first transmission wave is seen as shown in Figs.
2(a)(b), however, the second transmission wave amost equals to zero. In this case, the first
transmission wave involves the ordinary and extraordinary waves that depend on the relation
between an optical axis and an incident beam polarization. The power field p! varies from

minimum for d=7974.7 to maximum for d=7976.7 and it varies periodically for the slab thickness d.
Conversely, Py varies from maximum for d=7974.7 to minimum for d=7976.7, that is, the

variation changes by half a period.
On the other hand, the first reflection wave does not change for the slab thickness d because it
does not propagate through an anisotropic dielectric slab. The second reflection P! changes by

quarter a period compared with p¢ . Also, p; changesby half a period compared with p .
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Fig. 2 The normalized power field distributions of transmission and reflection beams for the
slab thickness d when s polarization is launched into calcite (n, =1.6565, n, =1.4857,
¢ =45°, 6 =90°) with incident beam angle 8 =30° and beam width w=5001 .

4. Conclusions

The characteristics of reflected and transmitted beams when the three dimensional Gaussian
beam is launched into the anisotropic dielectric slab whose optical axis has arbitrary direction is
described. Solutions were numerically calculated by using FFT. It was found that s component of
the transmission power field changes by half a period compared with p component of that for the
slab thickness d when first transmission wave involves the ordinary and extraordinary waves.
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