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1.Introduction

  In this paper, a new method based on the mode-

matching method in the sense of least squares [1], [2]

for analyzing the two dimensional scattering prob-

lem of plane wave incidence to the infinite plane

surface with an arbitrary imperfection of finite ex-

tent. The semi-infinite upper and lower regions of

that surface are a vacuum and a perfect conductor,

respectively.

  For this problem, the Rayleigh hypothesis [3] as-

sert that the scattered field may be expanded in

terms of outward-going wave functions and repr-

esented by the ordinary Fourier transform whose

spatial spectrum is not band-limited in the upper re-

gion of that surface including the boundary. How-

ever, it was shown that the Rayleigh hypothesis

could not be applied without a limiting condition by

van den Berg and Millar and so on [4], [5]. Namely,

the condition about the profile of the imperfection

in a surface was derived under which the hypothesis

is rigorously valid. For example, when the imper-

fection is sinusoidal periodic groove structure of

finite extent and the length of a period is D and a

half depth of the groove is A, the condition is

2pA/D< 0.448. Moreover, if the profile of grooves

is rectangular, Rayleigh hypothesis is can not be ap-

plied.

  In this paper, a new method is presented for ana-

lyzing the above-mentioned scattering problem.

This method is based on the mode-matching method

in the sense of least squares. In this method, the ap-

proximate scattered wave is represented by the

integral transform with band-limited spectrum of

plane waves. This approximate wave function is

determined in such way that the mean-square

boundary residual is minimized.

2. Formulation of the problem

x

y z
L

qqqqi

E(i)(z,x)y

- t1 t2

S

Fig.1 Geometry of the plane surface with an arbitrary

 imperfection of finite extent.

  Figure 1 shows the geometry of the plane surface

with an imperfection of finite extent. The upper re-

gion of the boundary L is vacuum and the lower

region is filled with a perfect conductor. The bound-

ary L is given as a function of the z-axis as follows:
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The incident wave is a TE plane wave polarized to y

direction and given as follows:

E (z,x) exp j z k x         (2)y
(i)

i i  = - ( ){ }[ ]b b

b q k b qi 0 i i 0 ik cos   ,  k sin          (3) = ( ) =
where, k (= 2 / )0 0p l and q i are wave number and

the angle of incidence measured from z-axis, re-

spectively. The time factor exp( j t)- w is suppressed.

When the plane wave of Eqs. (2) and (3) is incident

to the boundary L, the total field Y(t)
 (z,x) is given

by

Y Y(t) (s)
  (z,x) = f z,x (z,x)         (4)( ) +

where, f(z, x) is the sum of the incident plane

wave and the reflected wave by the perfect plane

surface having no imperfection of finite extent
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and given as follows:

f z x j x j zi i( , ) sin exp( )= - ( ){ }2 k b b  ,  (5)

and then Y(s)
 (z,x)  is the scattered wave generated by

the imperfection. The total field satisfies the bound-

ary condition as follows:

Y Y(t) (s)
  (z,x(z)) = (z) (z,x(z))  . (6)f z x( , ) +

In this method, the approximate wave function for

exact scattered wave Y(s) (z, x) is represented by the

integral transform with the band-limited spectrum of

plane waves as follows:
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where, y w h( ) is the spectra defined as
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and f(h,z,x) is a plane wave given by

f k k( , , ) exph z x j k h= { }[ ] ( )-   (h)x + hz (h) =  ,(9)  (10)0
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3. Algorithm

 The approximate wave function is determined in

such way that the mean-square boundary residual is

minimized. From concept of the method of least

square, the following mean-square error related with

boundary condition on L is defined.
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The integration of the approximate wave function of

Eq. (7) is discretized as follows:

Yw  dh

(m = 1,2, ,N)     (12)
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where, Cm is the infinitesimal interval of integration

and Am is the amplitude of the discretized spectrum.

Substituting Eq. (12) to Eq. (11), each Am is determin-

ed in order to minimize mean-square error of Eq. (11)

in such way that

∂ ∂ = ◊ ◊ ◊Ww mA* 0  ,  (m = 1,2, ,N)      ,   (13)

where, * denotes complex conjugate quantity.

Consequently, each Am is obtained by the following

set of simultaneous linear equations:

A dh A K h hm Cm m nmm
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( , ) ( )

= = ◊ ◊◊ ◊ ◊ ◊0 1 2 ,                n = 1,2, N) .   (14)( , , ;m N

It is considered that when mean-square error of Eq.

(11) converges to zero, namely, the boundary value of

the approximate wave function converges in the mean

sense to that of exact scattered wave, the former con-

verges uniformly to the latter in the arbitrary closed

subregion of S which is the upper region of the

boundary L of Fig.1 [6].

4. Examples of analyses

 (1) Scattering problems by sinusoidal periodic

    groove structures of finite extent.
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Fig.2 Geometry of surface of perfect conductor with sinu-

soidal periodic groove structure of finite extent.

   In this case, Figure 2 shows the boundary L with

a sinusoidal periodic groove structure of finite ex-

tent. The profile of the boundary is given by

x = (z) =
AcosKz  ,  z

             ,  z
 ,  K =
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D
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where D is the length of one period and A is a half

depth of the groove, respectively.

  Figure 3 shows the far-field pattern of the scattered

wave when a plane wave is incident at the angle of

incidence 90 degree. The length of imperfection part

is denoted as 2t=10.5D. Figure 3 shows that the pat-

tern is symmetrical about x-axis. It has good

agreement with the physical consideration because

the surface shown by figure 3 is symmetrical about x-

axis. Figure 4 shows mean-square error of boundary

condition on L as a function of bandwidth of ap-

proximated wave function when the depth is changed

from 0.05l0 to 0.15l0. This figure shows that the error

decreases monotonously with increasing bandwidth

for each depth of grooves. The minimum errors for

those depths are less than 8%. When the periodical

length D is equal to 1.1547l0, the region of parameter
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A that satisfies the condition 2pA/D< 0.448 under

which Rayleigh hypothesis is rigorously valid is A<

0.0823l0. Consequently, it is concluded that scatter-

ing problems beyond the condition mentioned above

can be analyzed precisely by the present method.
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Fig.3 Far-field pattern of the scattered wave when a

plane wave is incident at q i = 90∞ .
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Fig.4 Mean-square error of boundary condition on L,

as a function of a bandwidth.

(2) Scattering problems by rectangular periodic

groove structure of finite extent.
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Fig.5 Geometry of surface with rectangular periodic

groove structure of finite extent.

 In this case, discussion is developed for the plane

wave incidence to the surface with an imperfection

formed by rectangular periodic groove structure of

finite extent as shown by figure 5. In this analysis, z

and x coordinates on the boundary L are represented

by the parameter s which is the length measured from

the origin o along the surface to make those coordi-

nates single valued functions. In figures from 6 to 10,

the incident angle of plane wave is 90 degree and the

imperfection consists of rectangular groove struc-

ture of 2.5 periods. Scattering problems are analyzed

in the case that depths of the grooves are from 0.05l0

to 0.15l0. Band-limited spectra of approximate wave

functions have bandwidth in the region from 1k0 to 4

k0. Figure 6 shows the far-field pattern of the scat-

tered wave. This figure shows that the pattern is

symmetrical about x-axis. It has good agreement with

the physical consideration because the surface shown

by figure 5 is symmetrical about x-axis. Figure 7

shows mean-square error of boundary condition on L

as a function of bandwidth of approximated wave

function. This figure shows that the error decreases

monotonously with increasing bandwidth. The mini-

mum errors for those depths are less than 6%. Figure

8 shows the error about energy conservation. This

figure shows that the error decreases monotonously

with increasing bandwidth. The errors for those

depths are less than 1%. The figure 9 shows that

boundary values of approximate wave functions con-

verge in mean to the exact boundary value as band-

width increases. Figure 10 shows that spectra of ap-

proximate wave functions approach to a convergent

value with increase of bandwidth.                         
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Fig.6 Far-field pattern of the scattered wave when a

plane wave is incident on the surface with rectangular

periodic groove structure of finite extent at q i = 90∞ .
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Fig.7 Mean-square error of boundary condition on L,

which has the rectangular periodic groove structure of

finite extent, as a function of a bandwidth.
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Fig.8 Errors of energy conservation related to the ap-

proximate scattered waves as a function of a band-

width.
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Fig.9 Convergences in mean of the boundary values

of approximate scattered waves to the exact boundary

value.
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Fig.10 Convergences of band-limited spectra of ap-

proximate scattered waves as a function of band-

width.

 5. Conclusions

  In this paper, a new method for analyzing the two-

dimensional scattering problem of plane wave inci-

dence to the infinite plane surface with an arbitrary

imperfection of finite extent. This method is based on

the mode-matching method in the sense of least

squares. The present method is applied to two cases

in which imperfections consist of sinusoidal and rec-

tangular groove structures of finite extent. In the first

case, the problem beyond the condition in which the

Rayleigh hypothesis is valid can be analyzed by the

present method precisely. In the second case where

groove profile is rectangular and the Rayleigh hy-

pothesis cannot be applied, scattering problems can

be analyzed by the present method precisely. Conse-

quently, it is concluded that the present method is

effective for analyzing scattering problems mentioned

above.
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