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1. Introduction 
 
 Microwave imaging (MI) is an area of imaging methods when real object is illuminated by 
microwave signals radiating with transmitting antennas (Tx). Receiving antennas (Rx) gather information 
of electro-magnetic (EM) fields, scattered by this object and the reconstruction algorithms build the object 
image using this information. Microwave tomography (MT) system implements MI and is used for the 
purpose of early breast cancer detection, in particular [1]. Most of MT systems use a bath filled with a 
coupling liquid for better matching of antennas with the imaging object (human breast or other parts of 
bodies).  
 The quality of the reconstructed image is described by parameter of the spatial resolution, which 
is defined as minimal distance between any two distinguishable points of the object. Then the smaller 
spatial resolution, the more sharp is reconstructed image. The spatial resolution of the MT system depends 
on the amount of gathered information about the object. Ideally, for best quality image reconstruction, it is 
necessary to know a scattered EM field at some surface around the object for each its illumination. 
However, even in this case, the spatial resolution is usually limited by a media half-wavelength Rayleigh 
limit, which corresponds to the case of MT system detects propagating waves of the scattered field only. 
On the other hand, some papers reported about super-resolution effects in the reconstructed images [2].  
 For real MT systems, it is possible to measure scattered fields using Rx antennas placed in finite 
number of points. We can regards them as space sampling points that are similar to the time sampling 
points of time signals. Then the positions of Tx antennas, which produce illumination of the object, we 
can define as illumination points.  It is clear that for higher image resolution it is necessary to gather data 
using multistatic multiple-input multiple-output radar concept [3] (multi illumination and multi sampling 
points). The same amounts of sampling/illumination points can be realized using both static arrays of 
Tx/Rx antennas or by scanning array with small amount of the antennas.  
 In this work we compared two methods of gathering information in MI using identical Tx  and Rx 
antennas:  
1) number of illumination points  is relatively small (7 or 15, for example), and number of sampling 
points  is relatively large (150 or 300); 
2) ) number of illumination points  is relatively large (150 or 300, for example), and number of 
sampling points  is relatively small (7 or 15).  
We will compare these two methods under condition that  for the method 1 is equal to  for the 
method 2 and vice verse that is, keeping the same the total number of measurements · .  
 It is clear that if the illumination points in the method 1 coincide with the sampling points in the 
method 2 and vice verse, the both methods are equivalent because of  the reciprocity theorem. On the 
contrary, we regard more general case, when the illuminating and sampling points are different for both 
gathering methods.  
 More definitely, we compare application of two different circular antenna arrays having the same 
diameter and illuminating/sampling points are homogeneously distributed around the array circle. Our 
method of comparison is based on singular values decomposition (SVD) of Jacobian that in used in the 
Gauss-Newton image reconstruction algorithm [1, 4]. 
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2. Method of analysis 
 
 Let us regard the measurement noises to be a random process from a standard normal distribution. 
Then we can write the following equation in the linear approximation, relating the vector of noises  in 
all measured signals and vector of noises  in the reconstructed contrast [1, 4]:                                                                     (1)           
Here  , where  is an Jacobian, calculated at Cartesian fine mesh and  is wave number in the 
bath liquid.  We regard that noises have the same standard deviation for all measured signals and the 
measured data are normalized to the signals in the empty bath. Let us express SVD of the matrix  in the 
following standard form: 

                                                              (2) 
Combination and transformation of equations (1) and (2) provide to get the following relation: 

σ                                                          (3) 
Here σ  is a singular value of  with index i,  ,   .  
As far as  is a noise for normal distribution and equations (1) - (3) are linear, the  and  have normal 
distribution as well. Our investigation reveals that standard deviation  of vector  and standard 
deviation  of vector  are equal to standard deviations of vectors   and  correspondingly and 
also that   not depends on index i. Therefore, the next simple relation is following from (3): 

σ                                                   (4) 
 Let us define that the maximal acceptable noise level in the reconstructed image equal to  ,  and all acceptable values  are smaller than ,  . Hence from (4) we can 
evaluate the cutoff level for maximal acceptable singular values and effective rank  of the matrix  
[5]. Therefore, all SVD components with indexes  contribute to the reconstruction noises values, 
bigger than ,   and are not acceptable.  These statements can be expressed with the equations: 

σ ,  , for the acceptable σ       σ                  (5) 

 Note that the value  has direct relation to a mean value of the spatial resolution D [5] in the 
imaging zone. Namely, when the matrix  is calculated in some imaging volume ("imaging zone") the 
mean value D is equal to the distance between equidistant points when the total number of them in the 
imaging zone is equal to . Then   ⁄ /                                                  (6) 
where   is a volume of the imaging zone. 
 If positions of Tx/Rx antennas are arranged in a section of the imaging zone, the matrix  can be 
calculated in this plane of the imaging zone only. In this case the number  of such equidistant points 
should be calculated in this section plane only:  

    ⁄ /                                                 (7) 
where   is area of the section of the imaging zone. 
 We calculated Jacobians  at 3 mm Cartesian fine mesh for the measured complex signals, 
normalized to signals ,  at Rx antennas when Tx transmits inside the empty bath. The formula 
for calculation of Jacobian   at fine mesh is [1, 4]: / , ∆ · , · , / ,                   (8) 
where / ,  is an Jacobian matrix element at node  of the fine mesh when Tx antenna provides 
the illumination and Rx antenna provides the sampling;  ,   and ,   are z-components of 
the electric field at the node  in the cases of the illumination with  and Rx antenna, correspondingly; 

 is the size of the fine mesh. The fields ,  in (8) are excited by point sources  with the 
current density [4]: 
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   · ·  

where  is the delta-function, ω  is the angular frequency, 0μ  is the permeability of free-space 
and accent mark ^ defines unit vector. In this case the following analytical expression for the electric field 
in empty bath, including the near-field terms, can be applied:   · 1 i ·  1 i  · ·              (9a) 

where | |, k is a wave-number in the bath media,  is the identity dyadic and   is a dyadic as 
well (eq. (7.136) in [6]). This expression becomes more simple when all nodes , Tx and Rx antennas 
are arranged in the same layer:  · 1 j                                        (9b) 
 
3. Results of simulations 
 
 We performed simulations of the Jacobians in MATLAB using equations from the previous 
chapter to compare two different methods of the gathering information, described in the Introduction. For 
our purpose we kept the following condition:   ,  1   ,  2  ,  1   ,  2 
Note that these equalities provide the same total number of measured signals ·  for both methods.  
 We regard circular array 150 mm in diameter and all antennas are small dipoles. The antennas are 
placed into the bath filled with propylene glycol 100% solution (PG100) as a coupling liquid; its 
dielectric properties are presented in Table 1. The testing frequencies are 900, 1500, 2100, and 2900 MHz. 
 

Table 1. Dielectric properties of PG100 bath material 
Frequency, 

MHz 
permittivity conductivity, 

S/m 
900 11.87 0.5 
1500 8.72 0.63 
2100 7.42 0.73 
2900 6.50 0.83 

 

 
Fig. 1 Singular values of the matrix  (1), (2) for the case of array diameter 150 mm, PG100 bath liquid, 

 and  are equal to 150 or 15; frequency 2900 MHz. The cutoff level is 0.1. 
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 Fig. 1 demonstrates example of plots of simulated singular values for both methods at 2900 MHz, 
where the cutoff line with level 0.1 , is showed by a horizontal line. The parameter  is 
determined by an intersection of the cutoff line and the singular values graphics. Table 2 contains values 
D  in whole simulated cases and half-wavelength Rayleigh limits  [2, 3] of the spatial resolution: | |                                                                    (10) 
 

Table 2. Mean values of the spatial resolution D in mm 
Frequency, 

MHz 
 = 150, 
 = 15 

 = 15, 
 = 150 

 = 150, 
 = 7 

 = 7, 
 = 150 

 

900 28 30 36 36 32 
1500 23 23 28 31 24 
2100 19 19 22 24 20 
2900 15 16 18 18 16 

 
Fig. 1 and Table 2 demonstrate that both methods of gathering information for MI are practically 
equivalent if the total amounts of measured data are the same. Table 2 demonstrates that for all testing 
frequencies, average values of spatial resolution are very close to their half-wavelength Rayleigh limit (10) 
for the bath material with losses. 

 
4. Conclusion 
 
 We can formulate the main conclusion that both considered methods are equivalent in sense of 
amount of information gathering for microwave imaging. They provide the same spatial resolution of 
reconstructed image, if the total amounts of measured data are the same. This result, probably, can be 
generalized to the following rule for the microwave imaging. Namely, if we determine type of Tx/Rx 
antennas, the measurement noises and illumination/sampling surface and if illumination/sampling points 
are distributed at this surface uniformly, then the amount of gathering information depends on number of 
measured  signals and not depends on method of information gathering.  
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