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1. Introduction: An extended ray theory (ERT), that is an extension of the ordinary ray 
theory and the GTD to the complex coordinate space, interprets some new aspects about 
scattering from two-dimensional objects[1],[2]. When a scatteIer is composed of dielec
trics. the scattering phenomenon is more complicated than that of a perfectly conducting 
object, because of surface scattering and volume one. The volume scattering from a circu
lar cylinder and a sphere have been interpreted as contributions for geometrical optics 
(GO) rays and diffracted rays transverse in the interior of a scatterer[2]-[4]. It is possi
ble to analyze the scattering mechanism on an arbitrary shaped dielectric object by using 
the ERT, so that it may be revealed in terms of reflection, refraction and diffraction events. 

We investigate transient scattering from a smooth dielectric cylinder with concave
convex boundary in a homogeneous medium, e.g .• light scattering by an air bubble in water. 
To do so, we classify scattering process into six elementary processes and scattering 
centers can be obtained by chans for these elementary processes in the ERT[5]. After 
obtained scattering centers, we reconstruct transfer functions by calculating the amplitude 
and phase of rays determined by the intuitive role of the ordinary ray theory and the GTD, 
here, we have done for GO rays. To check the validity of the ERT solutions are compared 
with those given by reference solutions provided by the Yasuura method[6J. 

2. Extended ray theory 
We consider a plane wave scattering from a 

dielectric cylinder whose contour is given by 
p=p(4)) and relative refractive-index is N<1[71 
as shown in Fig.l. In the ERT, scattering proc
ess can be represented by reflection and refrac
tion events and diffraction events which are 
denoted by symbols "G" and" D", respectively, 
and classified into six elementary processes, 

(GI) G, (02) Gm+2, (01) D, (02) DGmD, 

(m=(), I ,2, .. ) Fig.1 Scattering model and its coordinate system. 

(0 I) stands for specular reflection events , (G2) m-time internal reflection events, and 
(01), (02), (03) and (04) diffraction events, Here we only consider GO contributions. 
With the help of ray tracing technique, we make chans for (G 1) and (G2) which show the 
relation between observation angles and incidence points of GO rays. Using these charts. 
we can calculate real scattering centers and complex ones. Then, we reconstruct transfer 
function of specularly reflected rays (SR) and m-times internally reflected rays ([Rm), 
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H (ka) = ~ H so (ka) + ~ ~ H IRm (ka) 
m 

(1) It olU 

H so(ka) = RII ($ so) I so -1/2 exp( -jk<l>so) (2) I. 
m 

H IRm (ka) = T12($o) [n R22($,) I T21 ($m.') ,., • m.1 
[n I,I/2 I exp(-jk<l>lRm) (3) 
,-0 -,. 

where R 11, R22 and T 12, T21 denote reflection coefficients 
and refraction ones, respectively. Cl>SR and ~IRm are ray ·Ie. 
path lengths, and ]SR-1n. and ]q-ln. (q=O. I ... ) are given by the 
conservation of energy. Therefore, tran sient response 1.0 'Uta) 
waveform from a dielectric object can be expressed by 
Fourier synthesis in terms of the frequency domain 
transfer function and the input pulse spectrum[l). 0.5 

v. 
" " 

3. Examples and discussion 
We consider scattering from a periodically deformed 0.0 a'""'---~I5--~'--';'~~:' 

cylinder with concave-convex boundary contour described 
by 

p($) = a { 1- 5 cos(3$) }. 0.1 <5 < 1 (4) 
Fig.2 TOO pulse and its spectrum. 

where "a" denotes the average radius. Transfer functions for S=O.2, N=0.75, an incidence 
angle cx=O and an observation angle 9=rt/6 have been calculated at 1100 data points at 
increments .6.ka=O.OS over O.05skas55.0 for E- and H-polarized field, because of the 
spectrum of TDG pulse (n= 18/t)[1] as shown in Fig.2. 

To get scattering centers for specular reflection and m-time internal reflection. we make 
charts for elementary processes (GI) and (G2) as shown in Fig.3. Using these chart , we 
can obtain real scattering centers and complex ones of rays; complex ray contributions are 
significanl in shadowed side of caustics (de/d$i=O) for a deformed cylinder (5=0.2). The 
scanering centers for a circular cylinder and a deformed cylinder obtained here are shown 
in Table 1 and their ray paths in Fig.4. Then, transient response waveforms are recon
structed by these GO rays in the ERT. 

It is numerically shown that a TDG pulse response waveform for a deformed cylinder 
(S=O.2), whose data is calculated by Yasuura method[61. is more complicated than that 
for a circular cylinder as shown in Fig.S (a),(b); we have similar results for H-polarized 
field. We can trace all of response waveforms on time-axis by using the result in Table 1 
and their response waveforms can be reconstructed by using Eqs.(l)-(3) as shown in 
Fig.S (c),(d). [n comparison with reference solutions and ERT solutions, the scattering 
mechanism for these examples can be explained by real ray contributions and complex 
ones in terms of specular reflection events and internal reflection events and for H-polari
zation case, too. The results show that we have weak diffraction events on the problem 
considered here. 

4. Conclusion 
The ERT is a useful technique for analyzing scattering mechanism on an arbitrary shaped 

dielectric object. We will investigate diffracted rays such as creeping rays and reflected 
creeping rays[1] in the near future. 
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Fig.3 . The charts for the relation between observation angles and incidence points for GO rays. 
Dashed and solid lines denote a circular cylinder case and a deformed cylinder case (S:O.2), 
respectively. Circle dots indicate creeping rays or diffracted rays which hit on boundary 
tangentially and propagate along boundary in the interior side of a scatterer. Solid dots 
indicate GO rays that are tangential on boundary in the interior side. N=-O.75, a=O. 

Table 1. Incidence points ( ¢ i) and time(t/'t ) (b) a deformed cylinder{o =O.2,N=O.75.cx.=O,9=1t/6). 
of conuibuted rays (e=1t/6) obtained by the 
charts in Fig.3. '" .1 (de,ree) l/, In[ (1 ) 

" 40.15360 8:~ O. 0Il000 
CS. -14 .62891 t 8.20126j ·0.01141 

(a) a circular cylinder(N=O .75 ,a=O,e=1t/6). IRI -15.75984 1.57493 0.0Il000 
CIRI . 38 . 09994 - 8. 25955j 1.08946 -0.12732 

'" ~ i(de,ree) l/, 

" 15.00000 0.00000 

i" ·8.95379 1.44545 

1112 -32.55887 1.60021 
1R2 Z4.14194 1.93938 

1R3 -39 .86275 1. 75619 
1R3 35.07851 2.07513 
1R3 -3.45952 2.95802 

1R2 -51.92502 1.72670 0.00000 
1R2 -34.94103 ].65892 0.00000 
1R2 -28.25640 1.67477 0.00000 
1R2 ·20 .01271 i.60'j' 0.00000 
1R2 -19.21908 1.621 1 0.00000 
1R2 18.\7073 2.08832 0.11IJIIOO 
1R2 3S.12394 I. 74158 0.11IJIIOO 
1R2 39.0530\ 1.66865 0.00000 

"1 45.92415 1.67507 0.11IJIIOO 
IR 50 .84665 1.79344 0.00000 

CJR2 21.42095 t 2.46263~ 1.84207 -0 .0:1093 
CJR2 -39.95132 - 2.053\5J 1.38288 -0.03184 
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(a) a circular cylinder. (b) a deformed cylinder (6=0.2) 

Fig.4. Ray paths of rays as shown in Table I . 
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(c) Reconstructed solution by ERT for a circular cylinder. 
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(b) Reference solution by Yasuura method for a deformed cylinder (0=0.2). 
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(d) Reconstructed solut ion by cRT for a defomlcd cylinder (0=0.2). 
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FigS TOG pulse (n=18/t) response waveforms for E-polarized field (N=O.75, 11=0, 6='/1:/6). 


